The Mathematics Behind Neural Networks

Pattern Recognition and Machine Learning
by Christopher M. Bishop

Student: Shivam Agrawal
Mentor: Nathaniel Monson
THIS IS YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG PILE OF LINEAR ALGEBRA, THEN COLLECT THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG?

JUST STIR THE PILE UNTIL THEY START LOOKING RIGHT.

Courtesy of xkcd.com
The Black Box

“Training” the network tunes a network function.

This **network function** is used to approximate functions that we believe model some data.

For example, we believe that whether a picture has a dog or a cat is modeled by some function, and we train NN’s to approximate this function.
Structure of a NN

- Input Layer
- Hidden Layers
- Output Layers

\[f(\mathbf{w} \cdot \mathbf{x} + b) \]

Individual neurons make up layers

- Input - Vector of activations of previous layer
- Weights - Vector for linear transformation of input
- Bias - To shift function
- Activation Function - Applies nonlinear transformation
- Activation - Output of neuron

What the output layer spits out is considered the value of the network function for the given input.
Actually Seeing It

2 inputs, 2 hidden layers w/ 3 neurons, 2 outputs
Application to Digit Recognition

We believe there is some function out there, that if we give it a picture of a digit represented as a vector, that it can classify the picture as either 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.
The Network Structure

784 inputs, 1 hidden layer with 10 neurons, output layer with 10 neurons corresponding to probability that the image is of the (n-1)th digit for the nth neuron
Optimizing the Network

But how do we set the weights and biases and the number of layers and the number of neurons and...(the list goes on and on) → We train the network

Learnable Parameters
Parameters that the network learns over the training period
- Weights
- Biases

Hyper Parameters
Parameters that humans must set before the network training begins
- Structure of the network (number of layers, number of neurons per layer, activation function)
- Learning Rate
- Error Function
Step 1 of Training: How Wrong is It?

To optimize the network, we need to quantify how wrong the network is:

Cost Function (AKA Error Function) → A function of the input, weights, and bias

\[
E(x, W, b) = \frac{1}{N} \sum_{i=1}^{N} \|y_{pred} - y_{actual}\|^2
\]
Step 2 of Training: Minimize How Wrong It is!

Error function is a function of input, weights, and biases. Inputs are constant, but weights and biases can be changed.

Say we want to move from point A on the function to point B such that the value of the error function is lower at B than at A.

How? → Move in the direction **OPPOSITE** the gradient. (gradient with respect to weights of a layer and gradient with respect to biases of a layer)
Descending The Curve → Gradient Descent

\[w^{t+1} = w^t - \eta \nabla C \]

Where \(w \) is the weight matrix for a layer

\(t \) is the index of the iteration

\(\eta \) is the learning rate and \(\nabla C \) is the cost with respect to the weights of this layer

Opposite direction → negative sign

Same idea for biases
Types of Gradient Descent

Different Ways - Batch works best in practice considering training time vs accuracy

- Over entire data set - batch gradient descent
- Over portion - mini-batch gradient descent
- Over single input - stochastic gradient descent

Calculating the Gradient

- Using Limits
- Backpropagation
Calculate Using Limits

\[
\frac{\partial C}{\partial w_{ij}^{(l)}} = \frac{C_2 - C_1}{2\varepsilon}
\]

Calculate cost after altering a single weight

Calculate \(C_2 \) with \(w_{ij}^{(l)} \rightarrow w_{ij}^{(l)} + \varepsilon \)

Calculate \(C_1 \) with \(w_{ij}^{(l)} \rightarrow w_{ij}^{(l)} - \varepsilon \)

Same idea for biases
Calculate Using Backprop

Intuition: Any change in a neuron will impact the output of the entire layer, which then impacts the output of the next layer, and keeps going till the end of the network → the error propagates forward.

\[\delta^L = \nabla C \odot a^L \]

\[\delta^{(l)} = ((w^{(l+1)})^T \delta^{(l+1)}) \odot f'(z^{(l)}) \]

- The weights are a scaling factor for the previous layer's output.
- A value to represent the error in the rest of the network, caused by the change in \(z \).
- How the change in \(z \) affected output of neuron, i.e. the change in activation.
Neural network requires a significant amount of human input:

- Structure of network (number of layers, number of neurons, etc.)
- Choice of Cost function
- Choice of Activation function
- Optimization technique
- Learning rate

Hyperparameters → parameters set before learning and remain constant

Problem: How to pick the right hyperparameters → Good news

Overfitting → Risk of creating a network function that predicts extremely well for training data, but extremely poor on test data.
Network Training Results

Network Parameters:

- Number of Epochs: 30000
- Batch Size: 100
- Learning Rate: 0.5

Results: Around 75% accuracy → this is really bad! (for MNIST)
Future

75% accuracy may be good for certain situations, but it is really bad when the data is as “easy” as MNIST - all the digits are centered, there is little deviation between labels (only so many ways to write a digit), and there is a lot of data.

To improve this accuracy:

- Optimize hyperparameters - there are algorithms that can change the learning rate over time, deactivate/activate neurons to prevent overfitting, etc.
- Use a Convolutional Neural Network - Specifically for images, “3D” connectivity between neurons.
Questions?

P.S. If you need someone to get you coffee everyday, or possibly translate some math into Matlab, Python, Java (soon to include C and R) code, let’s talk!
Or drop me a line at sagrawa2@terpmail.umd.edu