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The Black Box
“Training” the network tunes a 
network function.

This network function is used to 
approximate functions that we 
believe model some data.

For example, we believe that 
whether a picture has a dog or a 
cat is modeled by some function, 
and we train NN’s to approximate 
this function.



Structure of a NN
● Input Layer
● Hidden Layers
● Output Layers
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● Input - Vector of activations of previous layer
● Weights - Vector for linear transformation of input
● Bias - To shift function
● Activation Function - Applies nonlinear transformation
● Activation - Output of neuron

What the output 
layer spits out is 
considered the 
value of the 
network function 
for the given input

Individual neurons make up layers



Actually Seeing It

2 inputs, 2 hidden layers w/ 
3 neurons, 2 outputs



Application to Digit Recognition
We believe there is 
some function out 
there, that if we give 
it a picture of a digit 
represented as a 
vector, that it can 
classify the picture 
as either 0, 1, 2, 3, 4, 
5, 6, 7, 8, or 9



The Network Structure
784 inputs, 1 hidden layer with 10 neurons, output layer with 10 neurons corresponding to 
probability that the image is of the (n-1)th digit for the nth neuron



Optimizing the Network
But how do we set the weights and biases and the number of layers and the 
number of neurons and…(the list goes on and on) → We train the network

Learnable Parameters
Parameters that the network 
learns over the training period
● Weights
● Biases

Hyper Parameters
Parameters that humans must set before 
the network training begins
● Structure of the network (number 

of layers, number of neurons per 
layer, activation function)

● Learning Rate
● Error Function



Step 1 of Training: How Wrong is It?
To optimize the network, we need to quantify how wrong the network is:

Cost Function (AKA Error Function) → A function of the input, weights, and bias



Step 2 of Training: Minimize How Wrong It is!
Error function is a function of input, weights, 
and biases. Inputs are constant, but weights 
and biases can be changed.

Say we want to move from point A on the 
function to point B such that the value of the 
error function is lower at B than at A.

How? → Move in the direction OPPOSITE the 
gradient. (gradient with respect to weights of 
a layer and gradient with respect to biases of 
a layer)



Descending The Curve → Gradient Descent

Where w is the weight matrix for a layer

t is the index of the iteration

n is the learning rate and ∇C is the cost with respect to the weights of this layer

Opposite direction → negative sign

Same idea for biases



Types of Gradient Descent
Different Ways - Batch works best in practice 
considering training time vs accuracy

● Over entire data set - batch gradient descent
● Over portion - mini-batch gradient descent
● Over single input - stochastic gradient descent

Calculating the Gradient

● Using Limits
● Backpropagation



Calculate Using Limits

Calculate cost after altering a single weight

Calculate with 

Calculate with 

Same idea for biases



Calculate Using Backprop
Intuition: Any change in a neuron will 
impact the output of the entire layer, 
which then impacts the output of the next 
layer, and keeps going till the end of the 
network → the error propagates forward.

How the change in z 
affected output of 
neuron, i.e. the 
change in activation

The weights are 
a scaling factor 
for the previous 
layer's output

z = w • x + b 
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A value to represent 
the error in the rest of 
the network, caused 
by the change in z



Nuances
Neural network requires a significant amount of human input: 

● Structure of network (number of layers, number of neurons, etc.)
● Choice of Cost function
● Choice of Activation function
● Optimization technique
● Learning rate

Hyperparameters → parameters set before learning and remain constant

Problem: How to pick the right hyperparameters → Good news

Overfitting → Risk of creating a network function that predicts extremely 
well for training data, but extremely poor on test data.



Network Training Results
Network Parameters:

● Number of Epochs: 30000
● Batch Size: 100
● Learning Rate: 0.5

Results: Around 75% accuracy → this 
is really bad! (for MNIST)



Future
75% accuracy may be good for certain situations, but it is really bad when the data is 
as “easy” as MNIST - all the digits are centered, there is little deviation between labels 
(only so many ways to write a digit), and there is a lot of data.

To improve this accuracy:
● Optimize hyperparameters - there are algorithms that can change the learning 

rate over time, deactivate/activate neurons to prevent overfitting, etc.
● Use a Convolutional Neural Network - Specifically for images, “3D” connectivity 

between neurons.



Questions?

P.S. If you need someone to get you coffee everyday, or possibly translate 
some math into Matlab, Python, Java (soon to include C and R) code, let’s talk! 

Or drop me a line at sagrawa2@terpmail.umd.edu 


