
The Mathematics
Behind Neural

Networks
Pattern Recognition and Machine Learning

by Christopher M. Bishop

Student: Shivam Agrawal

Mentor: Nathaniel Monson

Courtesy of xkcd.com

The Black Box
“Training” the network tunes a
network function.

This network function is used to
approximate functions that we
believe model some data.

For example, we believe that
whether a picture has a dog or a
cat is modeled by some function,
and we train NN’s to approximate
this function.

Structure of a NN
● Input Layer
● Hidden Layers
● Output Layers

f (w • x + b)

x1

x2

x3

a1

● Input - Vector of activations of previous layer
● Weights - Vector for linear transformation of input
● Bias - To shift function
● Activation Function - Applies nonlinear transformation
● Activation - Output of neuron

What the output
layer spits out is
considered the
value of the
network function
for the given input

Individual neurons make up layers

Actually Seeing It

2 inputs, 2 hidden layers w/
3 neurons, 2 outputs

Application to Digit Recognition
We believe there is
some function out
there, that if we give
it a picture of a digit
represented as a
vector, that it can
classify the picture
as either 0, 1, 2, 3, 4,
5, 6, 7, 8, or 9

The Network Structure
784 inputs, 1 hidden layer with 10 neurons, output layer with 10 neurons corresponding to
probability that the image is of the (n-1)th digit for the nth neuron

Optimizing the Network
But how do we set the weights and biases and the number of layers and the
number of neurons and…(the list goes on and on) → We train the network

Learnable Parameters
Parameters that the network
learns over the training period
● Weights
● Biases

Hyper Parameters
Parameters that humans must set before
the network training begins
● Structure of the network (number

of layers, number of neurons per
layer, activation function)

● Learning Rate
● Error Function

Step 1 of Training: How Wrong is It?
To optimize the network, we need to quantify how wrong the network is:

Cost Function (AKA Error Function) → A function of the input, weights, and bias

Step 2 of Training: Minimize How Wrong It is!
Error function is a function of input, weights,
and biases. Inputs are constant, but weights
and biases can be changed.

Say we want to move from point A on the
function to point B such that the value of the
error function is lower at B than at A.

How? → Move in the direction OPPOSITE the
gradient. (gradient with respect to weights of
a layer and gradient with respect to biases of
a layer)

Descending The Curve → Gradient Descent

Where w is the weight matrix for a layer

t is the index of the iteration

n is the learning rate and ∇C is the cost with respect to the weights of this layer

Opposite direction → negative sign

Same idea for biases

Types of Gradient Descent
Different Ways - Batch works best in practice
considering training time vs accuracy

● Over entire data set - batch gradient descent
● Over portion - mini-batch gradient descent
● Over single input - stochastic gradient descent

Calculating the Gradient

● Using Limits
● Backpropagation

Calculate Using Limits

Calculate cost after altering a single weight

Calculate with

Calculate with

Same idea for biases

Calculate Using Backprop
Intuition: Any change in a neuron will
impact the output of the entire layer,
which then impacts the output of the next
layer, and keeps going till the end of the
network → the error propagates forward.

How the change in z
affected output of
neuron, i.e. the
change in activation

The weights are
a scaling factor
for the previous
layer's output

z = w • x + b
f (z) a1

x1x2
z = w • x + b

f (z)
x3

x1

x3x2
z = w • x + b

f (z)
x3

x1

x2
z = w • x + b

f (z)
x3

x1
2x

A value to represent
the error in the rest of
the network, caused
by the change in z

Nuances
Neural network requires a significant amount of human input:

● Structure of network (number of layers, number of neurons, etc.)
● Choice of Cost function
● Choice of Activation function
● Optimization technique
● Learning rate

Hyperparameters → parameters set before learning and remain constant

Problem: How to pick the right hyperparameters → Good news

Overfitting → Risk of creating a network function that predicts extremely
well for training data, but extremely poor on test data.

Network Training Results
Network Parameters:

● Number of Epochs: 30000
● Batch Size: 100
● Learning Rate: 0.5

Results: Around 75% accuracy → this
is really bad! (for MNIST)

Future
75% accuracy may be good for certain situations, but it is really bad when the data is
as “easy” as MNIST - all the digits are centered, there is little deviation between labels
(only so many ways to write a digit), and there is a lot of data.

To improve this accuracy:
● Optimize hyperparameters - there are algorithms that can change the learning

rate over time, deactivate/activate neurons to prevent overfitting, etc.
● Use a Convolutional Neural Network - Specifically for images, “3D” connectivity

between neurons.

Questions?

P.S. If you need someone to get you coffee everyday, or possibly translate
some math into Matlab, Python, Java (soon to include C and R) code, let’s talk!

Or drop me a line at sagrawa2@terpmail.umd.edu

