Generative Adversarial
Nets(GANS)

Troy Cary and Chenzhi Zhao

* A generative adversarial net is a type of neural
net, used in deep learning/machine learning
problems

* The goal of a GAN is to train two simultaneous
models: a generative model G and a

What 1S 3 discriminative model D

GAN P, * The generative model uses training data to

' create fake data points, and the discriminative
model estimates the probability that the fake
data points came from training data rather than
G.

Neural Nets

A neural net is a framework
used to have machines
“learn”, and is inspired by the
brain.

The inputs are neurons, and
hold a value between 0 and 1

Loosely analogous to
biological networks of
neurons “firing” causing
others to “fire”

Output layer is determined by
specific problem

Hidden Layer

Output

)
¥
Vp)
(O
)
qo
O
_l
v
=
>
K
Q.
-
©
X
LL]

OQ—=2M3FHhe \% o
O~NmMAve~e
Q~NAMY LY N o
ONNM IV NN &
Q-~N®OTYHhe Nooo
VQeEANARXIHYN D
O~V oI LS N
ONNORVS 0y)™
Q=dMT A0 N
Ol T v N\ o
QNP AL S Ny
Q~NM>'q2% ~to
Q=NMY YO+
V=Admx LYo Ny
QN M T AN N Y

label=9

Input Layer

28 x 28 =784

* In the MNIST Handwritten B oo s naacesaasooaacanant
Digits dataset, each digit is S0000000500888855888800000 00

represented by a pixel of
grayscale values

* Each neuron in the input
layer would correspond to a
pixel with a value between 0
and 1.

Screenshots taken from 3Brown1Blue YouTube channel

Hidden Layers

* Weights are assigned to
each neuron, which
correspond to the
connection between the
neurons and the next layer

* For this example, the
weights are initialized
randomly(explained later)

wia1+wo2a2+wsaz+wig+- - -+ Wy, Qp,

w1: 2.07
: wz: 2.31
Hidden Layers cont. S~ ws: 3.64
N wa: 1.87

Ws:—1.51

we:—0.43
wr: 2.01
wg: 1.07

Then, the activation value
from the input layer is used
to compute a weighted sum
of all the inputs

Sigmoid
This weighted sum is then

put into a sigmoid function
in order to get all outputs
between 0 and 1

In addition, a bias term may
be added based on specific
problem

Hidden Layers cont.

* This can be broken down into a
matrix multiplication, and
components of linear algebra can
be used to solve this problem.

L ELELEL

Hidden Layers
cont.(last one |

Average cost of What’s the

: all training data... [(0.29 —)2+ of this difference?
promise) (0.91 — 0.00)2+ N
(0.65 — 0.00)*+ 0! O1
« Utilizing a loss function and stochastic (0.14 — 1.00)*+ 8; gi
gradient descent is essential to choosing N | (0.50 —)2+ Y O4
the weights in these problems Cost of 3) (0.91 —)2+ @ Os
* Since the weights were initially chosen ()2+ 8? 8?
randomly, we can define a cost ()24 Y 08
function(average of the loss function) to 5 @Y 09
measure how off our guesses were ()"+
()2 Utter trash

* The cost function is large when the
guesses are far off, so minimizing cost is
the goal

* Stochastic gradient descent is then used
to optimize this cost

Output Layer

On to GANSs

ENE TOR
The Amst

A neural network tryingto WERTA
create pictures of cats that
look real.

* The goal of a GAN is to train Thousands of real-world
two simultaneous models: a images labeled “CAT"
generative model G and a
discriminative model D
The generative model uses D|5(I3‘R|M|NAT0R -

. “The Art Critic” :
tralnlng.data to create fa ke A neural network examining - DISCRIMINATOR «— E\
data points, and the cat pictures to determine if l -

discriminative model they're real or fake.
estimates the probability that

the fake data points came

from training data rather than

G.

@i

that came from the data rather than p,. We train D to maximize the probability of assigning the
correct label (o both training examples and samples from (. We simultaneously train (7 to minimize
log(1 = D(G(z))). In other words, D and G play the following two-player minimax game with
value function V(G, D):

minmax V(D,G) = By, (2)l0g D(@)| + B, (2 log(1 = D(G(2)))). (1)

G D

GAN Paper

* For this project we read a paper called “Generative Adversarial Nets” by
lan J. Goodfellow and co. from the Universite de Montreal

* The paper contains proofs and theoretical results, however the purpose
of this project was to focus more on the practical side

* The most important result of the paper is listed above, which determines
the way the network trains

ﬁé“ﬂ“ﬂﬂﬂ@l@ﬂ‘ﬂﬁw, .'

e @ . - @@l | 4 meed
v @@ a2 @@ (| 7 d R
i ce—=Gh@E = —-ddlE& " | k@
ii@ﬂﬁﬁlﬁ@@ii."&iiﬁ
W = O ﬁ?ﬂ”Aﬁj ¥ " "
= I A >
= | ai(in.".ﬁ \a.l-lrmeﬂﬂﬂ J 3
S B = i '.'l“ﬂm ﬂnﬂ Y
'l.ﬂﬂ"“'l?l. @) RN~
: ol T G @SS ™4 @S
_Iiﬂﬂﬂ ECmme@i = | | |- -
ﬁa?ﬂMHMMm%ﬁiﬂiM&ﬁ::Iﬁ
1 ﬂl.ﬂ!ﬂlﬂ.‘.ﬁﬁ"u_:_:_?“ S8 L-./Mm\w
e m—— G Sac-eaad ‘| | o6 -
Ime———g@m s e T) e
;@'nnnﬁ l@'ﬂ“ﬂ,ﬁﬁg.l

i w' ﬂfﬂﬂml, .-..-MI.O_
= xlmﬂilil
@& @Ee==i mslgﬁgl wn
L= ?IH".______M.I.WN‘.
B = m.lv £'.A‘

&
~ Y W

ﬁ@l

)

K
/
|

il

&= nnnnemﬁﬂlﬁérl.n'.J _

2 c mem
B0 O 5 ¥ c
(G m.nms ..qLaOnm
o - R o o L e
. — (4] —z
S GE S Br_lur.nluoo S5 c
n Z © 0 5% $es3
wn X GW
T N S22 00w = °
L (T aoNw 2 =
v VE Qo N =9 5
— SG2ETE 20
A A O+ =2 X" q@ V-
) -~ e N — Zra
= 2o o Pg =3
m..L._L r..ma eVda
= ©® © O O < Wdunm
VT W O < © .=
[] o

Code

+ The Generator

The generator uses tf.keras.layers.Conv2DTranspose (upsampling) layers to produce an image from a seed (random noise). Start with a Dense layer that takes
this seed as input, then upsample several times until you reach the desired image size of 28x28x1. Notice the tf.keras.layers.LeakyRelU activation for each
layer, except the output layer which uses tanh.

[11] def make_generator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(7%7%256, use_bias=False, input_shape=(1€@,)))
model.add(layers.BatchNormalization())
model .add(layers.LeakyRelLU())

model .add(layers.Reshape((7, 7, 256)))
assert model.output shape == (None, 7, 7, 256) # Note: None is the batch size

model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
assert model.output_shape == (Mone, 7, 7, 128) E
model.add(layers.BatchNormalization())

model.add(layers.lLeakyRelLU())

model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same',| use_bias=False))
assert model.output _shape == (None, 14, 14, 64) :

model .add(layers.BatchNormalization())

model.add(layers.LeakyReLU())

model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (Mone, 28, 28, 1) :

return model

Code cont.

+ The Generator

The generator uses tf.keras.layers.Conv2DTranspose (upsampling) layers to produce an image from a seed (random noise). Start with a Dense layer that takes
this seed as input, then upsample several times until you reach the desired image size of 28x28x1. Notice the tf.keras.layers.LeakyRelU activation for each
layer, except the output layer which uses tanh.

[11] def make_generator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(7%7%256, use_bias=False, input_shape=(1€@,)))
model.add(layers.BatchNormalization())
model .add(layers.LeakyRelLU())

model .add(layers.Reshape((7, 7, 256)))
assert model.output shape == (None, 7, 7, 256) # Note: None is the batch size

model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
assert model.output_shape == (Mone, 7, 7, 128) E
model.add(layers.BatchNormalization())

model.add(layers.lLeakyRelLU())

model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same',| use_bias=False))
assert model.output _shape == (None, 14, 14, 64) :

model .add(layers.BatchNormalization())

model.add(layers.LeakyReLU())

model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (Mone, 28, 28, 1) :

return model

Results

Over a period of 60 epochs, here
are some results:

Time for epoch 9 is 11.811452627182007 sec

Results cont.

Epoch 33

%%time
train(train_dataset, EPOCHS)

Time for epoch 33 1is 12.254274606704712 sec

Results cont.

Epoch 60

° %%t ime

train(train_dataset, EPOCHS)

1]=]1
L

|
=T
ZHZE

CPU times: user 3min 44s, sys: 59.3 s, total: 4min 43s
Wall time: 12min 14s

&

