Coding Theory

Kaman Phamdo
Mentor: Sean Ballentine
December 9, 2015
What is a code?

- A code converts information into another representation
- Used for communication through a channel
- How computers communicate
- Encoding
- Decoding
What is a code?

message source

source encoder

channel

NOISE

source decoder

receiver
Example 1

We → 00
love → 01
laugh → 10
math → 11

Suppose we wanted to send the message “We love math”...
Example 1

We love math

00 01 11

channel

We → 00
love → 01
laugh → 10
math → 11

We love laugh

00 01 10

NOISE

no error detected
Error-Detecting Codes

- ISBN (book numbers) - a 10-digit code used to uniquely identify a book
- Last digit is a check digit used for error detection
- Error-detecting but not error-correcting
Error-Correcting Example

We → 00000
love → 00111
laugh → 11001
math → 11110

Suppose we wanted to send the message “We love math” again, but this time using a longer length for code words.
Error-Correcting Example

We love math

00000 00111 11110

We → 00000
love → 00111
laugh → 11001
math → 11110

channel

00000 00111 11111

error detected (maximum likelihood choice is “math”)
Error-Correcting Codes

- Need to detect and correct errors due to noisy channels
- Can be more expensive and less efficient
- We want good error-correcting capabilities and transmission rates
- Coding theory examines transmission of data across noisy channels and recovery of corrupted messages
Hamming Distance

- Let x and y be words of length n over alphabet A. The Hamming distance $d(x,y)$ is the number of places at which x and y differ.
- We can define a minimum Hamming distance for a code.
- Larger minimum distance = better error-correcting capability.
Linear Codes

- A linear code is an error-correcting code in which each linear combination of codewords are also in the coding alphabet.
- Linear codes are vector spaces.
- Easier to encode and decode.
- Example: $A = \{000, 001, 010, 011\}$.
Encoding Linear Codes

- Let C be a binary linear code with basis $\{r_1 \ldots r_k\}$
- C can represent 2^k pieces of information (words)
- Any codeword u can be written uniquely as: $u_1 r_1 + \ldots + u_k r_k$
- The process of representing these elements is called encoding
Decoding Linear Codes

- For non-linear codes, decoding can require exponential computing
- This is why we want linear codes to use in practice
- Nearest neighbor decoding: simple algorithm for decoding linear codes
The main coding theory problem

- Three parameters
 - d - Minimum (hamming) distance
 - n - Length of code words
 - M - Size of coding alphabet
- Given a fixed n and d, what is the largest possible size M that a code can achieve?
- We also examined fixing the other two parameters
Hamming Ball

- For alphabet A, a ball of radius r and center u is the set of vectors in A that have a distance $\leq r$ from center u.
- The size of a ball of radius r and vectors of length n is given by:

$$
\binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{r}
$$

(for a binary code)

```python
# r = radius, n = length
def ballsize(r, n):
    if (r == 1):
        return (1 + n)
    else:
        return fact(n)/(fact(r) * fact(n - r)) + ballsize(r - 1, n)
```
Our Approach

- Used Python to create computational algorithm
- Created a list to hold our optimal code and added 0 vector
- Generated a code that included each possible vector of at least distance d
- Continued until we had every possibility
- Kept track of best choice
More on Coding Theory

- Other possible paths:
 - Nonlinear codes
 - Nonbinary codes

- Coding Theory: A First Course - San Ling, Chaoping Xing