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THE SIERPINSKI GASKET
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Sierpinski Gasket has zero area?



CAPACITY DIMENSION AND FRACTALS

LetSC R"wheren=1, 2, or3 Z
n-dimensional box

e n = 1: Closed interval

* n = 2: Square

* n = 3: Cube

X

Let N(€) = smallest number of n-dimensional boxes of side length ¢
necessary to cover S



CAPACITY DIMENSION AND FRACTALS

n=1
Boxes of length € to cover line 5 AT
of length L: Length = L

[f L=10cm and € = 1cm, it takes 10 boxes to cover L

[f e = 0.5cm, it takes 20 boxes to cover L

i\.I.(s) o< %



CAPACITY DIMENSION AND FRACTALS

=2

Boxes of length € to cover
square S of side length L

If L = 20cm, area of S = 400cm?
e &=2cm: each box has area 4cm?

[t will take 100 boxes to cover S
e &=1cm: each box has area 1cm?

[t will take 400 boxes to cover S

N(e) <



CAPACITY DIMENSION AND FRACTALS
-2
In (N(£)) =D In (3) + In(C)

o ln(N(e))—ln(C)

in()

D

C just depends on scaling of S

Capacity Dimension: dim__S = lim :
g-07 ln(g)



- CAPACITY DIMENSION AND FRACTALS

Stage 1:

Ifs=§ N(g)=

N
aslir(l)l'F ln(%) 2

Stage 2: Stage n:
1
3 Ife=,N(e) =9 Ife ==, N(g)= 3"
g
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The Sierpinski Gasket is =

1.585 dimensional
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A set with non-integer
capacity dimension is
called a fractal.



ITERATED FUNCTION SYSTEMS

An Iterated Function System (IFS) F'is the union of the contractions
T B

THEOREM: Let F be an iterated function system of contractions in
R2. Then there exists a unique compact subset A, in R? such that for
any compact set B, the sequence of iterates {F"(B)}, -, converges in
the Hausdorff metric to A,

A is called the attractor of F.

This means that if we iterate any compact set in R? under F, we will
obtain a unique attractor (attractor depends on the contractions in F)



ITERATED FUNCTION SYSTEMS

A function T : R?— R? is affine if it is in the form
X\ ra byrx ehifanttby pie
o e bl B v ot
(linear function followed by translation)

We will deal with iterated function systems of affine contractions.



RANDOM ITERATION ALGORITHM

Drawing an attractor of IFS F:

Choose an arbitrary initial point v € R?
Randomly select one of the contractions T, in F
Plot the point T, (V)

Let T (V) be the new v

Repeat steps 2-4 to obtaln a representation of A,
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LET'S DRAW SOME
FRACTALS!



ITERATIONS AND FIXED POINTS fo) =x%+1

[terating = repeating the same procedure

Let f(x) be a function.
f(f(x)) = f%(x) is the second iterate of x under f.
F(f(f((x))) = f3(x) is the third iterate of x under f

Example: f(x) = x* + 1 FB(r) LG R

£(5) =26 |
F(f(5)) = £2(5) = f(26) = 677 \ /




ITERATIONS AND FIXED POINTS

A point p is a fixed point for a function fif its iterate is itself

fo)=p PR

Example: f(x) = x?
f(0)=0
f(f(0)) = f2(0) = f(0) =0

Therefore 0 is a fixed point of f




METRIC SPACES

Let S be a set. A metric is a distance function d(x, y) that satisfies 4
axioms V x,y € S
1% dix, ) &0
gend (o) = 00ifand only if x =y
Baad(ry ) —=dty. )
4, d(x,z) < d(x,y) +d(y,z)

Example: Absolute Value R

d,v) =[x — vyl e
(R, d) is a metric space d(x,y) = |x — y]




METRIC SPACES
Let (S, d) be a metric space.

A sequence {x, },,—, in S converges to x € Sif lim d(x,,x) =0

n—0o

This means that terms of the sequence approach a value s

A sequence is Cauchy if for all € > 0 there exists a positive integer N
such that whenever n, m = N, d(x,,, x,,,) < €
This means that terms of the sequence get closer together

(S,d) is a complete metric space if every Cauchy sequence in S
converges to a member of S



CONTRACTION MAPPING THEOREM
Let (S, d) be a metric space.

A function T: S-S is a contraction if 3 g € [0,1) such that
d(T(x), T(y)) < q *d(x,y)

|

10

? d(x, J’)

; mammmm——— -

d(T(x), T’




CONTRACTION MAPPING THEOREM

Contraction Mapping Theorem:
If (S,d) is a complete metric space, and T is a contraction, then
asn — oo, T™"(x) — unique fixed pointx* V x € S




HAUSDORFF METRIC

A set S is closed if whenever x is the limit of a sequence of members
of T, x actually isin T.

A set S is bounded if it there existsx € Sand r > 0 such thatV s € §,
d(x,s) <r
Means S is contained by a “ball” of finite radius

A set S € R" is compact if it is closed and bounded

Let K denote all compact subsets of R?



HAUSDORFF METRIC

If B is a nonempty member of K, and ¥ is any point in R?, the
distance from v to B is

d(v, B) = minimum value of Hfz’ - EH Vb EB
(distance from point to a compact set)

YOS,

Y
d(v, B)




HAUSDORFF METRIC

[f A and B are members of K, then the distance from A to B is
d(4, B) = maximum value of d(a, B) fora € A
(distance between compact sets)

Means we take the point in A that is most distant from any pointin B
and find the minimum distance between it an any point in B

A B

d(4, B)




HAUSDORFF METRIC

The Hausdorff metric on K is defined as:
D(A, B)=maximum of d(A4, B) and d(B, A)

B
d(B,A)

d(4,B) | A
A

d(B;A).

D(A4,B) =d(B,A)

d(A, B)



[terated Function System:
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Render Details:

Point size: 1px
# of iterations: 100,000
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[terated Function System:

Al
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[terated Function System:
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[terated Function System
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[terated Function System:
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Some IFS Formulas from Agnes Scott College

Graphs Created with Desmos Graphing
Calculator



http://ecademy.agnesscott.edu/~lriddle/ifs/ifs.htm
https://www.desmos.com/calculator

