Weak Solutions to Partial Differential Equations

Case study: Poisson’s Equation

William Golding

University of Maryland

May 5, 2016
Outline

1. Introduction
2. Weak formulation
3. Functional Analysis
4. Existence and Uniqueness
5. Regularity
Motivation

Poisson’s Equation

For \(u \in C^2(U) \) we say that \(u \) satisfies Poisson’s equation if

\[
\Delta u = f \quad \text{on } U \subset \mathbb{R}^n
\]

\[
u = 0 \quad \text{on } \partial U
\]

Figure: A steady state of the heat equation
Outline

1. Introduction
2. Weak formulation
3. Functional Analysis
4. Existence and Uniqueness
5. Regularity
Weak Derivatives

Definition

For, α a multiindex and $f \in L^p(U)$ for some open set U, we say $g = D^\alpha f$ is the weak derivative of f if

$$\int_U g \phi \, dx = (-1)^{|\alpha|} \int_U f \, D^\alpha \phi \, dx$$

for each $\phi \in C_c^\infty(U)$.

Example 1

Figure: Example of a weakly differentiable function $f(x) = |x|$

\[-\int_{-\infty}^{\infty} |x| \phi' \, dx = -\int_{-\infty}^{0} -x \phi' \, dx - \int_{0}^{\infty} x \phi' \, dx = \int_{-\infty}^{\infty} h(x) \phi \, dx\]

for each $\phi \in C_c^\infty(\mathbb{R})$ where $h(x)$ is the weak derivative of f given by

\[h(x) = \begin{cases}
1 & \text{if } x \geq 0 \\
-1 & \text{if } x < 0
\end{cases}\]
Example 2

\[g(x) = \begin{cases} 1 & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases} \]

Figure: Example of a non-weakly differentiable function \(g(x) \) the Heavyside function

\[
- \int_{-\infty}^{\infty} g(x) \phi' \, dx = - \int_{0}^{\infty} \phi' \, dx = \phi(0) = \int_{-\infty}^{\infty} \delta_0 \phi \, dx
\]
Sobolev Spaces

- Define the Sobolev spaces

\[W^{k,p}(U) = \{ f \in L^p(U) \mid D^\alpha f \in L^p(U) \forall |\alpha| < k \}. \]

which we norm with

\[\| f \|_{W^{k,p}} = \left(\sum_{|\alpha| \leq k} \| D^\alpha f \|_{L^p}^p \right)^{1/p} = \left(\| f \|_{L^p}^p + \| \nabla f \|_{L^p}^p + \cdots + \| \nabla^k f \|_{L^p}^p \right)^{1/p} \]

- In particular we denote the Hilbert space

\[W^{k,2}(U) = H^k(U) \]
Weak Formulation for Poisson’s Equation

- Now, for the classical formulation of Poisson’s equation we have

\[\Delta u = f \]

- We multiply by a test function \(v \in H^1(U) \) and integrate by parts to get the weak formulation,

\[
\int_U v \Delta u \, dx = - \int_U \nabla v \cdot \nabla u \, dx = \int_U fv \, dx
\]

Definition

We say that \(u \) is a weak solution to Poisson’s equation if for all \(v \in H^1 \), it satisfies

\[
B[u, v] = - \int_U \nabla v \cdot \nabla u \, dx = \int_U fv \, dx = f(v)
\]
Energy Estimates/Lax Milgram

Theorem

Let H be a Hilbert space, and $B : H \times H \rightarrow \mathbb{R}$ be a bilinear form satisfying the energy estimates for some constants $\alpha, \beta > 0$,

$$|B[u, v]| \leq \alpha \|u\|_H \|v\|_H$$

and

$$\beta \|u\|_H^2 \leq |B[u, u]|.$$

Then, if $f : H \rightarrow \mathbb{R}$ be a bounded linear functional, there exists a unique $u \in H$ such that

$$B[u, v] = f(v)$$

for each $v \in H$.
Energy Estimates for Poisson’s Equation

- First, by Holder’s inequality

 \[|B(u, v)| \leq \int_{U} |\nabla u| |\nabla v| \, dx \leq \|\nabla u\|_{L^2} \|\nabla v\|_{L^2} \leq \|u\|_{H^1} \|v\|_{H^1} \]

- By a Poincare inequality, for some \(\beta > 0 \),

 \[\|u\|_{L^2}^2 \leq \beta \|\nabla u\|_{L^2}^2 = \beta \int_{U} |\nabla u|^2 \, dx = \beta |B(u, u)| \]

 Thus,

 \[\|u\|_{H^1}^2 = \|u\|_{L^2}^2 + \|\nabla u\|_{L^2}^2 \leq (\beta + 1)|B(u, u)| \]
Existence and Uniqueness for Poisson’s Equation

Definition

We say \(u \) is a weak solution of Poisson’s equation if \(u \) satisfies

\[
B[u, v] = -\int_{\Omega} \nabla v \cdot \nabla u \, dx = \int_{\Omega} fv \, dx = f(v)
\]

for each \(v \in H^1 \).

- By Lax-Milgram, there exists a unique weak solution \(u \) to Poisson’s equation.
Outline

1. Introduction
2. Weak formulation
3. Functional Analysis
4. Existence and Uniqueness
5. Regularity
Assume $u \in C^2(U)$ for u our weak solution

Then, for each $v \in H^1$,

$$- \int_U \nabla u \cdot \nabla v \, dx = \int_U v \Delta u = \int_U f v \, dx$$

So, for each $v \in H^1$,

$$\int_U (\Delta u - f) v \, dx = 0$$

Therefore,

$$\Delta u = f \text{ a.e. on } U$$
References

[1] L. Evans
Partial Differential Equations.
American Mathematical Society (2010)