Differential Geometry: Curvature, Maps, and Pizza

Madelyne Ventura

University of Maryland

December 8th, 2015
What is Differential Geometry and Curvature?

- Differential Geometry studies the properties of curves and surfaces, and their higher dimensional analogs.

\[\kappa_g(t) = \frac{x'(t)y''(t) - x''(t)y'(t)}{(x'(t)^2 + y'(t)^2)^{3/2}} \]

In general, curvature of a curve can be described by the reciprocal of the radius of the closest approximating circle to the curve.

\[\kappa_g(t) = \frac{1}{R(t)} \]

Figure 1: Curvature can be measured through osculating circles.
Differential Geometry studies the properties of curves and surfaces, and their higher dimensional analogs.

Curvature measures how fast a curve changes at a given point (or time)
What is Differential Geometry and Curvature?

- Differential Geometry studies the properties of curves and surfaces, and their higher dimensional analogs.
- Curvature measures how fast a curve changes at a given point (or time)

\[\kappa_g(t) = \frac{x'(t)y''(t) - x''(t)y'(t)}{(x'(t)^2 + y'(t)^2)^{3/2}} \]
What is Differential Geometry and Curvature?

- Differential Geometry studies the properties of curves and surfaces, and their higher dimensional analogs.
- Curvature measures how fast a curve changes at a given point (or time)
 \[\kappa_g(t) = \frac{x'(t)y''(t) - x''(t)y'(t)}{(x'(t)^2 + y'(t)^2)^{3/2}} \]
- In general, curvature of a curve can be described by the reciprocal of the radius of the closest approximating circle to the curve. \(\kappa_g = \frac{1}{R(t)} \)

Figure 1: Curvature can be measured through osculating circles.
Given the curvature function $\kappa_g(t)$, there exists a regular curve parametrized by arc length $\vec{x}: I \to \mathbb{R}^2$ that has $\kappa_g(t)$ as its curvature function. Furthermore, the curve is uniquely determined up to a rigid motion in the plane.

In other words, if you have the curvature function of a planar curve, you can work backwards to parametrize the curve.

<table>
<thead>
<tr>
<th>Curvature</th>
<th>Curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Line</td>
</tr>
<tr>
<td>1</td>
<td>Unit Circle</td>
</tr>
<tr>
<td>$\frac{1}{(1+t^2)^{3/2}}$</td>
<td>Parabola</td>
</tr>
</tbody>
</table>

Table 1: Examples of curves and their curvatures.
Principal Curvature

- At every point on a surface, there are two normal vectors, we chose one and declare it to be the positive direction.
- Sectional curvature is created using the chosen normal vector and the tangent vector at each point.

![Diagram of principal curvature](image)

Figure 2: An infinite amount of sections are created.
At every point on a surface, there are two normal vectors, we chose one and declare it to be the positive direction.

Sectional curvature is created using the chosen normal vector and the tangent vector at each point.

Infinite amount of normal sections determine the curvature function.

Out of all the sectional curvatures, there is a κ_{min} and a κ_{max}.

The directions of the planes created by κ_{min} and κ_{max} are called the principal directions.

Figure 2: An infinite amount of sections are created.
Gaussian Curvature

- Gaussian Curvature is calculated by the product of the principal curvatures. $K = \kappa_{\text{min}}\kappa_{\text{max}}$.

Gaussian curvature is preserved under isometries, which are transformations that do not stretch or contract the distances. This fact is called Gauss's Theorema Egregium.
Gaussian Curvature

- Gaussian Curvature is calculated by the product of the principal curvatures. \(K = \kappa_{\text{min}}\kappa_{\text{max}}. \)
- Gaussian curvature is preserved under isometries, which are transformations that do not stretch or contract the distances. This fact is called Gauss’s *Theorema Egregium*.
Gaussian Curvature

- Gaussian Curvature is calculated by the product of the principal curvatures. \(K = \kappa_{\text{min}}\kappa_{\text{max}} \).
- Gaussian curvature is preserved under isometries, which are transformations that do not stretch or contract the distances. This fact is called Gauss’s *Theorema Egregium*.

![Figure 3: Positive, negative, and zero curvature respectively](image.png)
Gaussian Curvature Continued

Sphere
- \(K = \kappa_{\text{min}} \kappa_{\text{max}} = \frac{1}{r^2} > 0 \)

Hyperbolic Paraboloid
- \(K = \kappa_{\text{min}} \kappa_{\text{max}} = \frac{-1}{r^2} < 0 \)

Cylinder
- \(K = \kappa_{\text{min}} \kappa_{\text{max}} = 0 \cdot \kappa_{\text{min}} = 0 \)

Figure 4: One-Sheeted Hyperbolic Paraboloid has negative curvature.
Figure 5: Maps distort distance due to having no curvature
Applications of Gaussian Curvature

Figure 5: Maps distort distance due to having no curvature

Figure 6: Gaussian Curvature allows us to hold pizza correctly