Rotations in 3D using Geometric Algebra

Kusal de Alwis Mentor: Laura Iosip Directed Reading Program, Spring 2019

The Problem

- What is the Geometric Algebra?
- Rotating with Geometric Algebra
- Further Applications

Prior Methods

Rotation Matrix - 2D

 $\begin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$

Rotation Matrix - 3D

$\int \cos heta + u_x^2 \left(1 - \cos heta ight)$	$u_{x}u_{y}\left(1-\cos heta ight) -u_{z}\sin heta$	$u_x u_z \left(1-\cos heta ight)+u_y \sin heta^2$
$u_y u_x \left(1-\cos heta ight)+u_z \sin heta$	$\cos heta+u_y^2\left(1-\cos heta ight)$	$u_y u_z \left(1-\cos heta ight) - u_x \sin heta$
$\int u_z u_x \left(1-\cos heta ight) - u_y \sin heta$	$u_z u_y \left(1-\cos heta ight)+u_x \sin heta$	$\cos heta+u_z^2 \left(1-\cos heta ight)$,

Rotation Matrix - 3D

$\cos heta+u_x^2 \ (1-\cos heta)$	$u_{x}u_{y}\left(1-\cos heta ight) -u_{z}\sin heta$	$u_x u_z \left(1 - \cos heta ight) + u_y \sin heta ceil$
$u_y u_x \left(1-\cos heta ight)+u_z \sin heta$	$\cos heta+u_y^2\left(1-\cos heta ight)$	$u_y u_z \left(1-\cos heta ight) - u_x \sin heta$
$u_z u_x \left(1-\cos heta ight) - u_y \sin heta$	$u_{z}u_{y}\left(1-\cos heta ight) +u_{x}\sin heta$	$\cos heta+u_z^2\left(1-\cos heta ight)$]

0.36	0.48	-0.8]
-0.8	0.60	0
0.48	0.64	0.60

Quaternions – 3D

Quaternions – 3D

 $L_q(\boldsymbol{v}) = q\boldsymbol{v}q^*$

Quaternions – 3D

$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{ijk} = -1$$

$$L_q(\boldsymbol{v}) = q\boldsymbol{v}q^*$$

Octonions – 4D

			e_j						
	$e_i e_j$	e_0	e_1	e_2	e_3	e_4	e_5	e_6	e_7
	e_0	e_0	e_1	e_2	e_3	e_4	e_5	e_6	e_7
	e_1	e_1	$-e_0$	e_3	$-e_2$	e_5	$-e_4$	$-e_7$	e_6
	e_2	e_2	$-e_3$	$-e_0$	e_1	e_6	e_7	$-e_4$	$-e_5$
ρ.	e_3	e_3	e_2	$-e_1$	$-e_0$	e_7	$-e_6$	e_5	$-e_4$
c_i	e_4	e_4	$-e_5$	$-e_6$	$-e_7$	$-e_0$	e_1	e_2	e_3
	e_5	e_5	e_4	$-e_7$	e_6	$-e_1$	$-e_0$	$-e_3$	e_2
	e_6	e_6	e_7	e_4	$-e_5$	$-e_2$	e_3	$-e_0$	$-e_1$
	e_7	e_7	$-e_6$	e_5	e_4	$-e_3$	$-e_2$	e_1	$-e_0$

The Geometric Algebra

Extension of Rⁿ

• Vectors and Scalars

- O Same old algebra
 - Scalar Multiplication, Addition
- Only **one** augmentation...

The Geometric Product

O Inner Product

• Standard Dot Product

The Geometric Product

- O Inner Product
 - Standard Dot Product
- O Exterior Product
 - Another multiplication scheme
 - O Represents planes

The Geometric Product

- O Inner Product
 - Standard Dot Product
- O Exterior Product
 - Another multiplication scheme
 - Represents planes
- Geometric Product

$$ab = a \cdot b + a \wedge b$$

*Only for vectors

Implications of the Geometric Product

 $e_1e_2 = e_1 \cdot e_2 + e_1 \wedge e_2 = 0 + e_1 \wedge e_2 = e_1 \wedge e_2$

Implications of the Geometric Product

$$e_1e_2 = e_1 \cdot e_2 + e_1 \wedge e_2 = 0 + e_1 \wedge e_2 = e_1 \wedge e_2$$

Implications of the Geometric Product

$$e_1e_2 = e_1 \cdot e_2 + e_1 \wedge e_2 = 0 + e_1 \wedge e_2 = e_1 \wedge e_2$$

 $e_1(e_1 + e_2) = e_1e_1 + e_1e_2 = (e_1 \cdot e_1 + e_1 \wedge e_1) + (e_1 \cdot e_2 + e_1 \wedge e_2) = 1 + e_1 \wedge e_2$

Basis of Gⁿ

0 ...

 $\circ e_n$

• *n*-dimensional space

Basis of Gⁿ

 \circ e_1

 \circ e_2

 \circ e_3

 $\circ e_4$

0 ...

 \circ e_n

Rn

	0	<i>n</i> -dimensional	space
--	---	-----------------------	-------

○ 1 ○ e₁, e₂, e₃, ..., e_n ○ e₁ ∧ e₂, e₁ ∧ e₃, ... e₁ ∧ e_n, e₂ ∧ e₃, e₂ ∧ e₄, ... e₂ ∧ e_n ... e_{n-1} ∧ e_n ○ e₁ ∧ e₂ ∧ e₃, e₁ ∧ e₂ ∧ e₄, ... ○ ... ○ e₁ ∧ e₂ ∧ e₃ ∧ e₄ ∧ ... ∧ e_{n-1} ∧ e_n

Gn

- 2ⁿ-dimensional space

Rotations in Gⁿ

Projections & Rejections

• Unit a normal to a plane, Arbitrary v

Projections & Rejections

- O Unit a normal to a plane, Arbitrary v
- O Projection
 - $\circ v_{\perp} = (a \cdot v)a$
- O Rejection

- O Reflect v on plane perpendicular to a

- O Reflect v on plane perpendicular to a
- $\circ v = v_{\parallel} + v_{\perp}$
- $O R_a(v) = v_{\parallel} v_{\perp}$

- O Reflect v on plane perpendicular to a
- \circ $v = v_{\parallel} + v_{\perp}$
- $O R_a(v) = v_{\parallel} v_{\perp}$

$$a \cdot v = \frac{1}{2}(av + va)$$

- O Reflect v on plane perpendicular to a
- $o v = v_{\parallel} + v_{\perp}$

•
$$R_a(v) = v_{\parallel} - v_{\perp}$$

 $= v - (a \cdot v)a - (a \cdot v)a$
 $= v - 2(a \cdot v)a$
 $= v - 2\frac{1}{2}(av + va)a = v - ava - va^2 = v - ava - v$
 $= -ava$

$$Rot_{2\alpha}(v) = R_b(R_a(v)) = R_b(-ava) = -b(-ava)b = bavab$$

$$Rot_{2\alpha}(v) = R_b(R_a(v)) = R_b(-ava) = -b(-ava)b = bavab$$

$$(ba)(ab) = b(aa)b = bb = 1, ba = (ab)^{-1}$$

$$Rot_{2\alpha}(v) = R_b(R_a(v)) = R_b(-ava) = -b(-ava)b = bavab$$
$$(ba)(ab) = b(aa)b = bb = 1, ba = (ab)^{-1}$$
$$Rot_{2\alpha}(v) = (ab)^{-1}vab$$

 $R = uv = u \cdot v + u \wedge v = |u||v|e^{\theta B}$

$$R = uv = u \cdot v + u \wedge v = |u||v|e^{\theta B}$$

$$R = uv = u \cdot v + u \wedge v = |u||v|e^{\theta B}$$
$$ab = |a||b|e^{\theta B} = e^{\alpha B}$$

$$R = uv = u \cdot v + u \wedge v = |u||v|e^{\theta B}$$
$$ab = |a||b|e^{\theta B} = e^{\alpha B}$$
$$Rot_{2\alpha}(v) = (ab)^{-1}vab = e^{-\alpha B}ve^{\alpha B}$$

$$R = uv = u \cdot v + u \wedge v = |u||v|e^{\theta B}$$
$$ab = |a||b|e^{\theta B} = e^{\alpha B}$$
$$Rot_{2\alpha}(v) = (ab)^{-1}vab = e^{-\alpha B}ve^{\alpha B}$$

$$Rot_{\theta,B}(v) = e^{-\frac{\theta}{2}B}ve^{\frac{\theta}{2}B}$$

 $R = u\overline{v} = u \cdot v + u \wedge v$

 $= w + xe_1 \wedge e_2 + ye_2 \wedge e_3 + ze_1 \wedge e_3$

 $R = uv = u \cdot v + u \wedge v$

q = w + xi + yj + zk

 $= w + xe_1 \wedge e_2 + ye_2 \wedge e_3 + ze_1 \wedge e_3$

 $R = uv = u \cdot v + u \wedge v$ $= w + xe_1 \wedge e_2 + ye_2 \wedge e_3 + ze_1 \wedge e_3$ q = w + xi + yj + zk

 $e_1 \wedge e_2 = i$ $e_2 \wedge e_3 = j$ $e_1 \wedge e_3 = k$

 $R = uv = u \cdot v + u \wedge v \qquad \qquad q = w + xi + yj + zk$ $= w + xe_1 \wedge e_2 + ye_2 \wedge e_3 + ze_1 \wedge e_3$

 $e_1 \wedge e_2 = i$ $e_2 \wedge e_3 = j$ $e_1 \wedge e_3 = k$

Quaternions \subset Geometric Algebra

Further Applications

$\begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$

$$\begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \longrightarrow \alpha x + \beta y = b$$

$$\alpha x + \beta y = b$$

 $\alpha x + \beta y = b$

 $\alpha x \wedge y + \beta y \wedge y = b \wedge y$

$$\alpha x + \beta y = b$$

 $\alpha x \wedge y + \beta y \wedge y = b \wedge y$

 $\overline{y \land y} = 0$ $\alpha x \land y = b \land y$

 $\alpha x + \beta y = b$

 $\alpha x \wedge y + \beta y \wedge y = b \wedge y$

 $y \wedge y = 0$ $\alpha x \wedge y = b \wedge y$

$$\alpha = \frac{b \wedge y}{x \wedge y}$$

 $\alpha x + \beta y = b$

 $\alpha x \wedge y + \beta y \wedge y = b \wedge y$

 $y \wedge y = 0$ $\alpha x \wedge y = b \wedge y$

$$\alpha = \frac{b \wedge y}{x \wedge y}$$
 $\beta = \frac{b \wedge x}{y \wedge x} = \frac{x \wedge b}{x \wedge y}$

$$|x \wedge y| = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$$

$$|x \wedge y| = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$$

$$\alpha = \frac{b \wedge y}{x \wedge y} = \frac{\begin{vmatrix} b_1 & y_1 \\ b_2 & y_2 \end{vmatrix}}{\begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}}$$

Other Use Cases

Geometric Calculus
 Calculus in Gⁿ

Other Use Cases

- Geometric Calculus
 - O Calculus in Gⁿ
- Homogeneous Geometric Algebra
 - O Represent objects not centered at the origin
 - Projective Geometry

Other Use Cases

- O Geometric Calculus
 - O Calculus in Gⁿ
- Homogeneous Geometric Algebra
 - O Represent objects not centered at the origin
 - Projective Geometry
- O Conformal Geometric Algebra
 - O Better representations of points, lines, spheres, etc.
 - Generalized operations for transformations

International Workshop on Data-Mining and Statistical Science (DMSS2008) /

Feature Extraction with Geometric Algebra for Semi-Supervised Learning of Time-Series Spatial Vector

Minh Tuan Pham	School of Engineering, Nagoya University minhuan@ cmpb.cse.nagoya-u.ac.jp
Kanta Tachibana	School of Engineering, Nagoya University kanta@ fcs.coe.nagoya-u.ac.jp
Tomohiro Yoshikawa	School of Engineering, Nagoya University yoshikawa@ cse.nagoya-u.ac.jp
Takeshi Furuhashi	School of Engineering, Nagoya University furuhashi@ cse.nagoya-u.ac.jp

keywords: Geometric Algebra, Feature Extraction, Hidden Markov Model, Semi-supervised Learning

Summary

In fields of machine learning of patterns most conventional methods of feature extraction do not pay much attention to the geometric properties of data, even in cases where the data have spatial features. In this study we introduce geometric algebras to systematically extract invariant geometric features from spatial data given in a vector space. A geometric algebra is a multidimensional generalization of complex numbers and of quaternions, and able to accurately describe oriented spatial objects and relations between them. We further propose a kernel to measure similarity between two series of spatial vectors based on Hidden Markov Models. As an application, we demonstrate our new method with the semi-supervised learning of online hand-written digits. The result shows that the feature extraction with geometric algebra improved recognition rate in one-to-one semi-supervised learning problems of online hand-written digits.