Understanding the Prime Number Theorem
Misunderstood Monster or Beautiful Theorem?

Liam Fowl

September 5, 2014
1. Introduction

2. Complex Plane

3. Complex functions and Analytic Continuation

4. Gamma Function

5. Laplace Transform

6. Zeta Function

7. The Prime Number Theorem!
The Prime Number Theorem (PNT)

- Describes asymptotic behavior of $\pi(x)$
- Formally, $\pi(x) \sim \frac{x}{\log(x)}$ as $x \to \infty$

Goal

- Introduce preliminary topics necessary for the PNT
- Understand properties of functions necessary for PNT
- Briefly sketch proof of the PNT
1. Introduction

2. Complex Plane

3. Complex functions and Analytic Continuation

4. Gamma Function

5. Laplace Transform

6. Zeta Function

7. The Prime Number Theorem!
A complex number is a number of the form $z = x + iy$ where z has both a real and imaginary component.

Each complex number is an element in the complex plane (There is a one to one correspondence between \mathbb{C} and \mathbb{R}^2.)

We can also talk about the extended complex plane $\mathbb{C} \cup \infty$.
1 Introduction

2 Complex Plane

3 Complex functions and Analytic Continuation

4 Gamma Function

5 Laplace Transform

6 Zeta Function

7 The Prime Number Theorem!
Functions exist in \mathbb{C} just like in normal Euclidean n space. We can talk about differentiating and integrating these functions. (Cauchy Integral formula seen below)

$$f(a) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z - a} \, dz$$ \hspace{1cm} (1)

We can also talk about something called analytic continuation. This means extending an analytic function from its normal domain of definition.
1. Introduction

2. Complex Plane

3. Complex functions and Analytic Continuation

4. Gamma Function

5. Laplace Transform

6. Zeta Function

7. The Prime Number Theorem!
The Gamma function $\Gamma(z)$ extends the factorial function to the complex plane

Gamma function

For $Re(z) > 0$, we have:

$$\Gamma(z) = \int_{0}^{\infty} e^{-t} t^{z-1} dt \quad (2)$$

The identity $\Gamma(z + 1) = z\Gamma(z)$ arises from integration by parts. Using this identity, we can meromorphically extend $\Gamma(z)$ to the rest of \mathbb{C}.
Note: We can also express the Gamma function as an infinite product. Letting γ denote Euler’s Constant, we have:

$$\frac{1}{\Gamma(z)} = ze^{\gamma z} \prod_{k=1}^{\infty} (1 + \frac{z}{k})e^{-\frac{z}{k}}$$ (3)
1. Introduction

2. Complex Plane

3. Complex functions and Analytic Continuation

4. Gamma Function

5. Laplace Transform

6. Zeta Function

7. The Prime Number Theorem!
Laplace Transform

For a piecewise continuous function, $h(s)$, the Laplace transform is defined as:

$$(Lh)(z) = \int_0^\infty e^{-sz} h(s) \, ds \quad (4)$$

Aside

Interesting result: We can then write the derivative

$$\frac{d}{dz} \frac{\Gamma(z)}{\Gamma(z)} = \int_0^\infty e^{-sz} g(s) \, ds$$

Where $g(s) = \frac{s}{1-e^{-s}}$

Finally, we get an asymptotic relationship for Gamma:

$$\Gamma(z) = z^z e^{-z} \sqrt{\frac{2\pi}{z}} \left(1 + \frac{1}{12z} + O\left(\frac{1}{n^2}\right)\right)$$
Outline

1 Introduction

2 Complex Plane

3 Complex functions and Analytic Continuation

4 Gamma Function

5 Laplace Transform

6 Zeta Function

7 The Prime Number Theorem
The Zeta function (Euler) is represented by

\[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \text{ for } \Re(s) > 1 \]

(5)

We can see the more explicit connection of \(\zeta(s) \) and the primes if we look at the infinite product representation of the zeta function:

\[\zeta(s) = \prod_p \frac{1}{1-p^{-s}} \text{ for } \Re(s) > 1 \]

(6)
Now we want to extend Zeta to the entire complex plane. How? A branch cut here... an Integral there... and a lot of magic. It turns out that the Zeta function can be meromorphically extended to the complex plane. It has one simple pole at $s = 1$.

More formally, it satisfies the equation

$$
\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1 - s) \zeta(1 - s)
$$

(7)
Outline

1. Introduction
2. Complex Plane
3. Complex functions and Analytic Continuation
4. Gamma Function
5. Laplace Transform
6. Zeta Function
7. The Prime Number Theorem!
Stated again, formally: The number of primes, $\pi(x)$, not bigger than x satisfies

$$\pi(x) \sim \frac{x}{\log(x)} \text{ as } x \to \infty$$ \hspace{1cm} (8)

The proof of the PNT is pretty messy (and magical according to Dr. Gamelin), but it relies heavily upon the following functions:

$$\Phi(s) = \sum_p \frac{\log(p)}{p^s} (Re(s) > 1) \hspace{1cm} (9)$$

$$\theta(x) = \sum_{p \leq x} \log(p) \hspace{1cm} (10)$$
First, the proof involves showing that $\zeta(s)$ does not have any zeros on the line $Re(s) = 1$. Essentially, the rest of the proof boils down to proving that $\theta(x) \sim x$, but to do that, we look at the Laplace transform of a nasty variation of $\theta(x)$ and a tricky contour integral ... and tada! we have that $\frac{\theta(x)}{x} \sim 1$, and by squeeze, we have the PNT.

Interesting identity: $\pi(x) \sim \int_2^x \frac{1}{\log(t)} dt$
A special thanks to the entire DRP program for this opportunity. Especially to Nathaniel Monson for putting up with my questions.
Resources

If you want to improve this style

- Nathaniel Monson’s brain
- Complex Analysis, T. Gamelin