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SYMMETRIES OF THE SPHERE

• Let’s think about the rigid rotations of the sphere. 

• Rotations can be composed together to form new rotations.

• Every rotation has an inverse rotation.

• There is a “non-rotation,” or an identity rotation.

• For us, the distinct rotational symmetries of the sphere form a group, where 
each rotation is an element and our operation is composing our rotations.

• This group happens to be infinite, since you can continuously rotate the 
sphere.

• What if we wanted to study a smaller collection of symmetries, or in some 
sense a subgroup of our rotations?



THEOREM
• A finite subgroup of SO3 (the group of special rotations in 3 dimensions, or 

rotations in 3D space) is isomorphic to either a cyclic group, a dihedral group, 
or a rotational symmetry group of one of the platonic solids.

• These can be represented by the following solids : 

Cyclic            Dihedral         Tetrahedron             Cube         Dodecahedron

• The rotational symmetries of the cube and octahedron are the same, as are 
those of the dodecahedron and icosahedron.



GROUP ACTIONS

• The interesting portion of study in group theory is not the study of groups, but the 
study of how they act on things. 

• A group action is a form of mapping, where every element of a group G represents 
some permutation of a set X.

• For example, the group of permutations of the integers 1,2, 3 acting on the numbers 
1, 2, 3, 4. So for example, the permutation (1,2,3) -> (3,2,1) will swap 1 and 3.

• An orbit is a collection of objects that can be permuted by the actions of the group. 

• Under our example action, the orbit of 1 is {1, 2, 3}, while the orbit of 4 is {4}.

• A stabilizer is a collection of group elements that send a given set element onto 
itself.

• Under our example action, the stabilizer of 1 is only the group element              
{(1,2,3)->(1,2,3)}, while the stabilizer of 4 is the full group.



PROOF (SKETCH)
• Let G be a finite subgroup of SO3. Each 

element of G represents a rotation of 3D space 
about an axis that passes through the origin, 
besides the identity rotation. 

• We define the poles of a rotation g in G to be 
the two points on the unit sphere to be left 
fixed by g acting on 3D space. 

• Let X denote the set of all poles of all elements 
of G, our subgroup, other than the identity 
element.

• We have an action of G on X.



PROOF (COUNTING ARGUMENT)
• Let N denote the number of distinct orbits, and choose a pole for each orbit. 

Call these x1, x2, … xn. Every element of G – {e}, the identity, fixes exactly 2 
poles, while the identity fixes them all.

• Here, we use the Counting Theorem : 

• The number of distinct orbits of group G acting on set X is equal to 

• Where |Xg| is the number of elements of X left fixed by group element G.

• For this group action, using the property above, we have :



PROOF (BOUNDS ON N)

• With some algebraic manipulation of the last expression, we are left 
with : 
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• Assuming G is not the trivial group {e} of size 1, the left size of the 
equation must be greater than or equal to 1 and less than 2, since 
|G| > 1.

• In addition, each stabilizer has order at least 2 (the poles), so each 
term of the sum on the right is greater than or equal to ½ and less than 
1. 

• Thus, N is either 2 or 3.



PROOF (CASES)

• If N = 2, then we have 2 = |G(x1)| + |G(x2)|, and there can only be 2 poles. 
Every element in G must therefore rotate around the axis formed by these 
two poles, and the plane perpendicular to this axis is mapped onto itself. 
Therefore, G is isomorphic to a rotation in 2 dimensions and is a cyclic group.

• If N = 3, we have through some algebraic manipulation :

• Note that the terms |Gx|, |Gy|,  and |Gz| must be integers and that the 
right hand side of the equation must be greater than 1, so we have a set of 
possible solutions :



PROOF (MORE CASES)

• By continuing through the casework, we have the following :

• If we are in situation (a), with 1/2, 1/2, 1/n,  we have a dihedral group.

• In situation (b), with 1/2, 1/3, 1/3, we have a regular tetrahedron.

• In situation (c), with 1/2, 1/3, 1/4, we have the vertices of a regular octahedron, 
and equivalently the faces of a cube.

• In situation (d), with 1/2, 1/3, 1/5, we have the vertices of a regular icosahedron, 
and equivalently the faces of a dodecahedron.

• These are therefore all of the finite subgroups of the group of rotations on 3 
dimensions.
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