An Introduction to Schemes

Nicholas Hiebert-White
Advisor: Patrick Daniels

May 8, 2019
Let k be an algebraically closed field.

Definition

For some set of polynomials $\{f_i\}_{i \in I} \subseteq k[x_1, \ldots, x_n]$, define:

$$V(\{f_i\}_{i \in I}) := \{(a_1, \ldots, a_n) \in \mathbb{A}^n \mid f_i(a_1, \ldots, a_n) = 0\}$$

A set of this form is called an affine **algebraic set**.

Affine plane curve $V(X^4 - X^2 Y^2 + X^5 - Y^5)$ in $\mathbb{A}^2_{\mathbb{R}}$
We want to generalize these varieties to:

1. Handle Non-Algebraically closed fields (And rings in general)
2. Handle multiplicities
3. Connect affine and projective varieties

We need:

1. A set of “points”
2. A topology on these points
3. Functions on the open sets of these points

We’ll use the scheme version of the affine line $\mathbb{A}^1_{\mathbb{C}}$ and the integers \mathbb{Z} as examples.
Ingredients of a Scheme

We want to generalize these varieties to:

1. Handle Non-Algebraically closed fields (And rings in general)
2. Handle multiplicities
3. Connect affine and projective varieties

We need:

1. A set of “points”
2. A topology on these points
3. Functions on the open sets of these points

We’ll use the scheme version of the affine line $\mathbb{A}^1_{\mathbb{C}}$ and the integers \mathbb{Z} as examples.
Take a commutative ring R with unity.

Definition

The **spectrum** of R, $\text{Spec}(R)$, is the set of prime ideals p of R.

These serve as our points.

Example: The ring used for $\mathbb{A}^1_{\mathbb{C}}$ is $\mathbb{C}[x]$. $\mathbb{C}[x]$ has prime ideals of the form $(x - c)$ for $c \in \mathbb{C}$ and the zero ideal (0).

\mathbb{Z} has prime ideals (p) where p is a prime.

$(p) = \{ ap \mid a \in \mathbb{Z}\}$
The “Points”

Take a commutative ring \(R \) with unity.

Definition

The *spectrum* of \(R \), \(\text{Spec}(R) \), is the set of prime ideals \(p \) of \(R \).

These serve as our points.

Example: The ring used for \(\mathbb{A}^1_{\mathbb{C}} \) is \(\mathbb{C}[x] \).
\(\mathbb{C}[x] \) has prime ideals of the form \((x - c)\) for \(c \in \mathbb{C} \) and the zero ideal \((0)\).

\(\mathbb{Z} \) has prime ideals \((p)\) where \(p \) is a prime.
\((p) = \{ap \mid a \in \mathbb{Z}\}\)
If prime ideals are the points, then what are the elements of \(R \)?

They are functions on \(\text{Spec}(R) \):

Definition
For any \(p \in \text{Spec}(R) \) and \(f \in R \), define the “evaluation of \(f \) at \(p \)” to be \(f + p \in R/p \).

\(\mathbb{C}[x] \) example: Take \(f(x) = x^2 + x + 1 \in \mathbb{C}[x] \) and \((x - 2) \in \mathbb{C}[x] \). Then \(x^2 + x + 1 \equiv x - 7 \) in \(\mathbb{C}[x]/(x - 2) \).

Notice \(f(2) = 7 \).

\(\mathbb{Z} \) example: Take \((5) \) in \(\text{Spec}(\mathbb{Z}) \). Then 11 “evaluated at” \((5) \) is \(11 \equiv 1 \mod 5 \).
If prime ideals are the points, then what are the elements of R?

They are functions on Spec(R):

Definition

For any $p \in \text{Spec}(R)$ and $f \in R$, define the “evaluation of f at p” to be $f + p \in R/p$.

$\mathbb{C}[x]$ example: Take $f(x) = x^2 + x + 1 \in \mathbb{C}[x]$ and $(x - 2) \in \mathbb{C}[x]$. Then $x^2 + x + 1 \equiv x - 7$ in $\mathbb{C}[x]/(x - 2)$.

Notice $f(2) = 7$.

\mathbb{Z} example: Take $(5) \in \text{Spec}(\mathbb{Z})$. Then 11 “evaluated at” (5) is $11 \equiv 1 \mod 5$.
If prime ideals are the points, then what are the elements of R?

They are functions on $\text{Spec}(R)$:

Definition

For any $p \in \text{Spec}(R)$ and $f \in R$, define the “evaluation of f at p” to be $f + p \in R/p$.

$\mathbb{C}[x]$ example: Take $f(x) = x^2 + x + 1 \in \mathbb{C}[x]$ and $(x - 2) \in \mathbb{C}[x]$. Then $x^2 + x + 1 \equiv x - 7$ in $\mathbb{C}[x]/(x - 2)$.

Notice $f(2) = 7$.

\mathbb{Z} example: Take (5) in $\text{Spec}(\mathbb{Z})$. Then 11 “evaluated at” (5) is $11 \equiv 1 \mod 5$.
A picture of Spec(\(\mathbb{C}[x]\))

Visualization of \(A^{1}_{\mathbb{C}}\) [Vakil]. Note the “generic point” (0) off to the side.
$f \in R$ “evaluating” to 0 at $p \in \text{Spec}(R)$ means $f \in p$.

Definition

Given any subset $S \subseteq R$, define $V(S) = \{p \in \text{Spec}(R) \mid p \supseteq S\}$

$\mathbb{C}[x]$ example: $V(x^2 + x - 6) = \{[(x - 2)], [(x + 3)]\}$. Notice this is just finding the roots of $x^2 + x - 6$.

Definition

The sets $V(S)$ for all $S \subseteq R$ satisfy the axioms for being the closed sets of a topology. We define this as the **Zariski topology** on $\text{Spec}(R)$.
The Zariski Topology

\[f \in R \text{ “evaluating” to 0 at } p \in \text{Spec}(R) \text{ means } f \in p. \]

Definition

Given any subset \(S \subseteq R \), define \(V(S) = \{ p \in \text{Spec}(R) \mid p \supseteq S \} \).

\(\mathbb{C}[x] \) example: \(V(x^2 + x - 6) = \{ [(x - 2)], [(x + 3)] \} \).

Notice this is just finding the roots of \(x^2 + x - 6 \).

Definition

The sets \(V(S) \) for all \(S \subseteq R \) satisfy the axioms for being the closed sets of a topology. We define this as the **Zariski topology** on \(\text{Spec}(R) \).
The Zariski Topology

\[f \in R \text{ “evaluating” to 0 at } p \in \text{Spec}(R) \text{ means } f \in p. \]

Definition

Given any subset \(S \subseteq R \), define \(V(S) = \{ p \in \text{Spec}(R) \mid p \supseteq S \} \)

\(\mathbb{C}[x] \) example: \(V(x^2 + x - 6) = \{(x - 2), (x + 3)] \}. \)
Notice this is just finding the roots of \(x^2 + x - 6 \).

Definition

The sets \(V(S) \) for all \(S \subseteq R \) satisfy the axioms for being the closed sets of a topology. We define this as the **Zariski topology** on \(\text{Spec}(R) \).
We have a nice basis for the Zariski topology:

Definition
For any \(f \in R \), define the **distinguished open set**
\[
D(f) = \{ p \in \text{Spec}(R) \mid f \not\in p \} = \text{Spec}(R) \setminus V(f)
\]

\(\mathbb{Z} \) example: \(D(6) \) is set of all “primes” \(p \) such that \(6 \not\equiv 0 \pmod{p} \).
This means \(D(6) = \{ (p) \in \text{Spec}(\mathbb{Z}) \mid p \nmid 6 \} \).

Theorem
The distinguished open sets form a basis for the Zariski topology on \(\text{Spec}(R) \).

We use these to define the structure sheaf on \(\text{Spec}(R) \).
We have a nice basis for the Zariski topology:

Definition

For any \(f \in R \), define the **distinguished open set**
\[
D(f) = \{ p \in \text{Spec}(R) \mid f \not\in p \} = \text{Spec}(R) \setminus V(f)
\]

\(\mathbb{Z} \) example: \(D(6) \) is set of all “primes” \(p \) such that \(6 \not\equiv 0 \mod p \).
This means \(D(6) = \{ (p) \in \text{Spec}(\mathbb{Z}) \mid p \nmid 6 \} \).

Theorem

The distinguished open sets form a basis for the Zariski topology on \(\text{Spec}(R) \).

We use these to define the structure sheaf on \(\text{Spec}(R) \).
The last piece of a scheme is its structure sheaf. We want something like functions on open sets of a manifold.

Definition

Given a topological space X a sheaf \mathcal{F} assigns for each open set U of X a set (group, ring, etc) $\mathcal{F}(U)$. This can be seen as the "set of functions on $U". We then want:

1. If $V \subseteq U$ are open sets in X, we can "restrict" a function $f \in \mathcal{F}(U)$ uniquely to some $f' \in \mathcal{F}(V)$.
2. If $\{f_i\}_{i \in I}$ is a set of functions each defined on U_i that agree on interlaps, we want to be able to "glue together" the f_i's to some $f \in \mathcal{F}(\bigcap_{i \in I} U_i)$.
3. We want the above gluing to be unique.
The last piece of a scheme is its structure sheaf. We want something like functions on open sets of a manifold.

Definition

Given a topological space \(X \) a sheaf \(\mathcal{F} \) assigns for each open set \(U \) of \(X \) a set (group, ring, etc) \(\mathcal{F}(U) \). This can be seen as the "set of functions on \(U \)". We then want:

1. If \(V \subseteq U \) are open sets in \(X \), we can "restrict" a function \(f \in \mathcal{F}(U) \) uniquely to some \(f' \in \mathcal{F}(V) \).
2. If \(\{ f_i \}_{i \in I} \) is a set of functions each defined on \(U_i \) that agree on interlaps, we want to be able to "glue together" the \(f'_i \)'s to some \(f \in \mathcal{F}(\cap_{i \in I} U_i) \).
3. We want the above gluing to be unique.
Going back now to $\text{Spec}(R)$ with its Zariski topology, the structure sheaf is a sheaf of rings on $\text{Spec}(R)$.

Definition

For each distinguished open set $D(f) \subseteq \text{Spec}(R)$, Define:

$\mathcal{O}_{\text{Spec}(R)}(D(f))$ to be the localization of R at the set $S = \{ g \in R \mid V(g) \subseteq V(f) \}$, which is isomorphic to R_S.

We can think of this as “rational functions” with the denominator not vanishing where f vanishes.

$\mathbb{C}[x]$ example: If we take $x \in \mathbb{C}[x]$ then $\mathcal{O}_{\text{Spec}(\mathbb{C}[x])}(D(x)) = \mathbb{C}[x]_x$, which is rational functions f/g where $f, g \in \mathbb{C}[x]$ $x \nmid g$.

We can then extend this definition to get a sheaf on all open sets of $\text{Spec}(R)$.
Going back now to $\text{Spec}(R)$ with its Zariski topology, the structure sheaf is a sheaf of rings on $\text{Spec}(R)$.

Definition

For each distinguished open set $D(f) \subseteq \text{Spec}(R)$, Define:

$\mathcal{O}_{\text{Spec}(R)}(D(f))$ to be the localization of R at the set $S = \{ g \in R \mid V(g) \subseteq V(f) \}$, which is isomorphic to R_S.

We can think of this as “rational functions” with the denominator not vanishing where f vanishes.

$\mathbb{C}[x]$ example: If we take $x \in \mathbb{C}[x]$ then $\mathcal{O}_{\text{Spec}(\mathbb{C}[x])}(D(x)) = \mathbb{C}[x]_x$, which is rational functions f/g where $f, g \in \mathbb{C}[x]$ and $x \not| g$.

We can then extend this definition to get a sheaf on all open sets of $\text{Spec}(R)$.
The spectrum of R, the Zariski topology on $\text{Spec}(R)$ and the structure sheaf on the topological space give an **Affine Scheme**.

More general schemes are constructed by gluing affine schemes together:

Definition

A **Scheme** is a topological space X with a sheaf of rings where for every point $p \in X$ there is a neighborhood U of p such that $U \cong \text{Spec}(R)$ for some ring R. *

* This isomorphism is as *ringed spaces*, which roughly means the sheaves are isomorphic also.
The spectrum of R, the Zariski topology on $\text{Spec}(R)$ and the structure sheaf on the topological space give an Affine Scheme.

More general schemes are constructed by gluing affine schemes together:

Definition

A **Scheme** is a topological space X with a sheaf of rings where for every point $p \in X$ there is a neighborhood U of p such that $U \cong \text{Spec}(R)$ for some ring R. *

* This isomorphism is as ringed spaces, which roughly means the sheaves are isomorphic also.
Example: Projective Line

We can construct the projective line by gluing together two affine lines.

\[\mathbb{A}^1_k = \text{Spec}(k[t]) \]

\[U = D(t) = \text{Spec}(k[t, 1/t]) \]

\[\mathbb{A}^1_k = \text{Spec}(k[u]) \]

\[V = D(u) = \text{Spec}(k[u, 1/u]) \]

\[U \rightarrow V \quad t \mapsto 1/u \]

The gluing of the Affine lines [Vakil].
The Projective Line Continued

Theorem

\mathbb{P}^1_k is not isomorphic to the spectrum of any ring, that is \mathbb{P}^1_k is not an affine scheme.

This is because if \mathbb{P}^1_k was affine then \mathbb{P}^1_k would be isomorphic to the spectrum of the ring of “global sections” over \mathbb{P}^1_k. But the only polynomials defined over all of \mathbb{P}^1_k are constant, thus $\text{Spec}(\Gamma(\mathbb{P}^1_k, \mathcal{O}_{\mathbb{P}^1_k})) \cong \text{Spec}(k)$, which is only one point: $[(0)]$.