How to Beat a Small Child at Dots and Boxes

Alexa Tsintolas

Math and Games

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Ban

Combinatorial Games

- 2 players take tums

O No random element devices like dice orspinners

Dots and Boxes

- 2 player paperand pencil game

O Array of dots
O Connect vertically/horizonta ly neighboring dots
O Goal is to make the most boxes
O After winning a box, the playergoes again
O Game ends when no more boxescan be made

Stings and Coins

O Array of coins
O Cut vertic al a nd horizontal strings
O Goal is to free the most coins
O After winning a coin, the player goes again
O Game ends when no more coinscan be captured

Dots and Boxes: Iong Chains

O 3 ormore boxes

O $K \geq 3$ coins and exactly $K+1$ strings connected in a line

Hong Chatins Iheorem

If a Dots and Boxes position is reduced to just long chains, player P can eam most of the remaining boxes, where

$$
P \equiv M+C+B+D(\bmod 2)
$$

where the first player to move is player $P=1$, a nd her opponent is pla yer $\mathrm{P}=2$ (or, if you like $\mathrm{P}=0$).

The Double Cross

Double Dealing Move

Double Cross

Hong Chatins Iheorem

If a Dots and Boxes position is reduced to just long chains, player P can eam most of the remaining boxes, where

$$
P \equiv M+C+B+D(\bmod 2)
$$

where the first player to move is player $P=1$, a nd her opponent is pla yer $\mathrm{P}=2$ (or, if you like $\mathrm{P}=0$).

Example 1

$$
P \equiv M+C+B+D(\bmod 2)
$$

$1 \equiv 24+C+9+0(\bmod 2)$
$1 \equiv 33+C(\bmod 2)$
C even

Example 1

$$
P \equiv M+C+B+D(\bmod 2)
$$

$1 \equiv 24+C+9+0(\bmod 2)$
$1 \equiv 33+C(\bmod 2)$
C even

5xample 2

$P \equiv M+C+B+D(\bmod 2)$
$2 \equiv 24+C+9+0(\bmod 2)$
$2 \equiv 33+C(\bmod 2)$
C odd

5xample 2

$P \equiv M+C+B+D(\bmod 2)$
$2 \equiv 24+C+9+0(\bmod 2)$
$2 \equiv 33+C(\bmod 2)$
C odd

5xample 3

5xample 3

$$
\begin{gathered}
P \equiv M+C+B+D(\bmod 2) \\
1 \equiv 24+C+9+1(\bmod 2) \\
1 \equiv 33+C(\bmod 2) \\
C \text { odd }
\end{gathered}
$$

Nimstring

Resources

O Albert, Michael H., Richard J. Nowakowski, and David Wolfe. Lessons in Play: An Introduction to Combinatorial G ame Theory. Wellesley: AK Peters, 2007. Print.
O Berlekamp, Elwyn R. The Dots-and-boxes Game: Sophisticated Child's Play. Natick: A.K. Peters, 2000. Print.

O Rob Maschal

