Classification of Semisimple Lie Algebras

Kyle Reese

December 2019
What is a Lie Group?

Definition

A Lie Group G is a group that is also a differentiable manifold such that its group operations are smooth.

Example

The set of matrices $\text{GL}(n, \mathbb{C})$ is a Lie Group under matrix multiplication. So is $\text{SL}(n, \mathbb{C})$, and $\text{U}(n)$, $\text{SO}(n)$, and more.

Definition

A Matrix Lie Group is a closed subgroup $G \subseteq \text{GL}(n, \mathbb{C})$. That is, whenever $\{A_n\} \subseteq G$ converges to A, then either $A \in G$ or $A \notin \text{GL}(n, \mathbb{C})$.

For example: $\text{SL}(n, \mathbb{C})$ is a Matrix Lie Group because it is a subgroup of $\text{GL}(n, \mathbb{C})$, and if $\{A_n\} \subseteq \text{SL}(n, \mathbb{C})$ converges to A, then $A \in \text{SL}(n, \mathbb{C})$ because each A_n has determinant one and the determinant function is continuous.
What is a Lie Group?

Definition
A Lie Group G is a group that is also a differentiable manifold such that its group operations are smooth.
What is a Lie Group?

Definition
A Lie Group G is a group that is also a differentiable manifold such that its group operations are smooth.

Example
The set of matrices $GL(n, \mathbb{C})$ is a Lie Group under matrix multiplication.
What is a Lie Group?

Definition
A Lie Group G is a group that is also a differentiable manifold such that its group operations are smooth.

Example
The set of matrices $GL(n, \mathbb{C})$ is a Lie Group under matrix multiplication. So is $SL(n, \mathbb{C})$.
What is a Lie Group?

Definition
A Lie Group \(G \) is a group that is also a differentiable manifold such that its group operations are smooth.

Example
The set of matrices \(GL(n, \mathbb{C}) \) is a Lie Group under matrix multiplication.
So is \(SL(n, \mathbb{C}) \), and \(U(n) \)
What is a Lie Group?

Definition
A Lie Group G is a group that is also a differentiable manifold such that its group operations are smooth.

Example
The set of matrices $GL(n, \mathbb{C})$ is a Lie Group under matrix multiplication.
So is $SL(n, \mathbb{C})$, and $U(n)$, $SO(n)$
What is a Lie Group?

Definition
A Lie Group G is a group that is also a differentiable manifold such that its group operations are smooth.

Example
The set of matrices $GL(n, \mathbb{C})$ is a Lie Group under matrix multiplication.
So is $SL(n, \mathbb{C})$, and $U(n)$, $SO(n)$, and more.
What is a Lie Group?

Definition
A Lie Group G is a group that is also a differentiable manifold such that its group operations are smooth.

Example
The set of matrices $GL(n, \mathbb{C})$ is a Lie Group under matrix multiplication.
So is $SL(n, \mathbb{C})$, and $U(n)$, $SO(n)$, and more.

Definition
A Matrix Lie Group is a closed subgroup $G \leq GL(n, \mathbb{C})$. That is, whenever $\{A_n\} \subseteq G$ converges to A, then either $A \in G$ or $A \notin GL(n, \mathbb{C})$.
What is a Lie Group?

Definition
A Lie Group G is a group that is also a differentiable manifold such that its group operations are smooth.

Example
The set of matrices $GL(n, \mathbb{C})$ is a Lie Group under matrix multiplication.
So is $SL(n, \mathbb{C})$, and $U(n)$, $SO(n)$, and more.

Definition
A Matrix Lie Group is a closed subgroup $G \leq GL(n, \mathbb{C})$. That is, whenever $\{A_n\} \subseteq G$ converges to A, then either $A \in G$ or $A \notin GL(n, \mathbb{C})$.

For example: $SL(n, \mathbb{C})$ is a Matrix Lie Group because it is a subgroup of $GL(n, \mathbb{C})$, and if $\{A_n\} \subseteq SL(n, \mathbb{C})$ converges to A, then $A \in SL(n, \mathbb{C})$ because each A_n has determinant one and the determinant function is continuous.
Tangent Spaces and Lie Algebras

Definition

A Lie Algebra g is a vector space along with a map $[·, ·] : g \times g \rightarrow g$ that is bilinear, skew symmetric, and satisfies the Jacobi Identity:

$$[[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0$$

Two elements $X, Y \in g$ are said to commute if $[X, Y] = 0$.

▸ Given a differentiable manifold M and a point $p \in M$, the set of tangent vectors at p is denoted $T_p(M)$.

▸ Every Lie Group G has an associated Lie Algebra $g = T_0G$, where $0 \in G$ is the identity element.

Example

\mathbb{R}^3 with $[x, y] = x \times y$ is also a Lie Algebra.

$\mathfrak{gl}(V)$, the set of linear maps from V to itself, is a Lie Algebra with bracket $[x, y] = xy - yx$.
Tangent Spaces and Lie Algebras

Definition
A Lie Algebra \mathfrak{g} is a vector space along with a map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ that is bilinear, skew symmetric, and satisfies the Jacobi Identity:

$$\left[\left[X, Y \right], Z \right] + \left[\left[Y, Z \right], X \right] + \left[\left[Z, X \right], Y \right] = 0$$

Two elements $X, Y \in \mathfrak{g}$ are said to commute if $\left[X, Y \right] = 0$.

▶ Given a differentiable manifold M and a point $p \in M$, the set of tangent vectors at p is denoted $T_p(M)$.

▶ Every Lie Group G has an associated Lie Algebra $\mathfrak{g} = T_0G$, where $0 \in G$ is the identity element.

Example
\mathbb{R}^3 with $[x, y] = x \times y$ is also a Lie Algebra.

$\mathfrak{gl}(V)$, the set of linear maps from V to itself, is a Lie Algebra with bracket $[x, y] = xy - yx$.
Tangent Spaces and Lie Algebras

Definition
A Lie Algebra \mathfrak{g} is a vector space along with a map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ that is bilinear, skew symmetric, and satisfies the Jacobi Identity:

$$[[X, Y], Z] + [Y, [Z, X]] + [Z, [X, Y]] = 0$$
Tangent Spaces and Lie Algebras

Definition
A Lie Algebra \mathfrak{g} is a vector space along with a map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ that is bilinear, skew symmetric, and satisfies the Jacobi Identity:

$$[[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$$

Two elements $X, Y \in \mathfrak{g}$ are said to commute if $[X, Y] = 0$.

▶ Given a differentiable manifold M and a point $p \in M$, the set of tangent vectors at p is denoted $T_p(M)$.

▶ Every Lie Group G has an associated Lie Algebra $\mathfrak{g} = T_0G$, where $0 \in G$ is the identity element.

Example \mathbb{R}^3 with $[x, y] = x \times y$ is also a Lie Algebra.

$\text{gl}(V)$, the set of linear maps from V to itself, is a Lie Algebra with bracket $[x, y] = xy - yx$.

Tangent Spaces and Lie Algebras

Definition

A Lie Algebra \mathfrak{g} is a vector space along with a map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ that is bilinear, skew symmetric, and satisfies the Jacobi Identity:

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$$

Two elements $X, Y \in \mathfrak{g}$ are said to commute if $[X, Y] = 0$.

- Given a differentiable manifold M and a point $p \in M$, the set of tangent vectors at p is denoted $T_p(M)$.

- $\text{gl}(V)$, the set of linear maps from V to itself, is a Lie Algebra with bracket $[x, y] = xy - yx$.

Tangent Spaces and Lie Algebras

Definition
A Lie Algebra \(g \) is a vector space along with a map \([\cdot, \cdot] : g \times g \rightarrow g\) that is bilinear, skew symmetric, and satisfies the Jacobi Identity:

\[
[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0
\]

Two elements \(X, Y \in g \) are said to commute if \([X, Y] = 0\).

- Given a differentiable manifold \(M \) and a point \(p \in M \), the set of tangent vectors at \(p \) is denoted \(T_p(M) \).
- Every Lie Group \(G \) has an associated Lie Algebra \(g = T_0G \), where \(0 \in G \) is the identity element.
Tangent Spaces and Lie Algebras

Definition
A Lie Algebra \(\mathfrak{g} \) is a vector space along with a map \([\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}\) that is bilinear, skew symmetric, and satisfies the Jacobi Identity:

\[
[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0
\]

Two elements \(X, Y \in \mathfrak{g}\) are said to commute if \([X, Y] = 0\).

- Given a differentiable manifold \(M \) and a point \(p \in M \), the set of tangent vectors at \(p \) is denoted \(T_p(M) \).
- Every Lie Group \(G \) has an associated Lie Algebra \(\mathfrak{g} = T_0G \), where \(0 \in G \) is the identity element.

Example
\(\mathbb{R}^3 \) with \([x, y] = x \times y\) is also a Lie Algebra.
Tangent Spaces and Lie Algebras

Definition
A Lie Algebra \mathfrak{g} is a vector space along with a map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ that is bilinear, skew symmetric, and satisfies the Jacobi Identity:

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$$

Two elements $X, Y \in \mathfrak{g}$ are said to commute if $[X, Y] = 0$.

- Given a differentiable manifold M and a point $p \in M$, the set of tangent vectors at p is denoted $T_p(M)$.
- Every Lie Group G has an associated Lie Algebra $\mathfrak{g} = T_0 G$, where $0 \in G$ is the identity element.

Example
\mathbb{R}^3 with $[x, y] = x \times y$ is also a Lie Algebra. $\text{gl}(V)$, the set of linear maps from V to itself, is a Lie Algebra with bracket $[x, y] = xy - yx$.
Recall the matrix exponential map:

\[e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!} \]

It can be shown that this mapping converges for any complex-valued matrix \(A \), and is in fact continuous. In the case that \(G \) is a Matrix Lie Group, the Lie Algebra of \(G \) can be computed more practically as the set of complex matrices \(X \) such that \(e^{tX} \in G \) for every real \(t \).
Matrix Lie Algebras

Recall the matrix exponential map:

\[e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!} \]
Matrix Lie Algebras

Recall the matrix exponential map:

\[e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!} \]

It can be shown that this above mapping converges for any complex-valued \(A \), and is in fact continuous.
Matrix Lie Algebras

Recall the matrix exponential map:

\[e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!} \]

It can be shown that this above mapping converges for any complex-valued \(A \), and is in fact continuous.

In the case that \(G \) is a Matrix Lie Group, the Lie Algebra of \(G \) can be computed more practically as the set of complex matrices \(X \) such that \(e^{tX} \in G \) for every real \(t \).
Example: Computing the Lie Algebra of $SL(n, \mathbb{C})$

We seek matrices such that $e^{tX} \in SL(n, \mathbb{C})$, that is $\det(e^{tX}) = 1$.

We can show that for a general X, we have that $\det(e^{X}) = e^{\text{tr}(X)}$.

Thus, $\det(e^{tX}) = e^{t \cdot \text{tr}(X)}$.

So if $\text{tr}(X) = 0$ then $e^{t \cdot \text{tr}(X)} = 1$, and so $\det(e^{tX}) = 1$ as well. So X is in the associated Lie Algebra.

Conversely, suppose that $\det(e^{tX}) = 1 = e^{t \cdot \text{tr}(X)}$.

Then differentiating with respect to t we get that $\text{tr}(X) = \frac{d}{dt}[e^{t \cdot \text{tr}(X)}]_{t=0} = 0$.

So $e^{tX} \in SL(n, \mathbb{C})$ if and only if $\text{tr}(X) = 0$.

We denote the set of traceless matrices $\text{sl}(n, \mathbb{C})$. This is the Lie Algebra of $SL(n, \mathbb{C})$!
Example: Computing the Lie Algebra of $SL(n, \mathbb{C})$

- We seek matrices such that $e^{tX} \in SL(n, \mathbb{C})$
Example: Computing the Lie Algebra of $SL(n, \mathbb{C})$

- We seek matrices such that $e^{tX} \in SL(n, \mathbb{C})$, that is $\text{det}(e^{tX}) = 1$.

- We can show that for a general X, we have that $\text{det}(e^{X}) = e^{\text{tr}(X)}$.

- Thus, $\text{det}(e^{tX}) = e^{t \cdot \text{tr}(X)}$.

- So if $\text{tr}(X) = 0$ then $e^{t \cdot \text{tr}(X)} = 1$, and so $\text{det}(e^{tX}) = 1$ as well. So X is in the associated Lie Algebra.

- Conversely, suppose that $\text{det}(e^{tX}) = 1 = e^{t \cdot \text{tr}(X)}$.

- Then differentiating with respect to t we get that $\text{tr}(X) = \frac{d}{dt}[e^{t \cdot \text{tr}(X)}]_{t=0} = 0$.

- So $e^{tX} \in SL(n, \mathbb{C})$ if and only if $\text{tr}(X) = 0$.

We denote the set of traceless matrices $\mathfrak{sl}(n, \mathbb{C})$. This is the Lie Algebra of $SL(n, \mathbb{C})$!
Example: Computing the Lie Algebra of $SL(n, \mathbb{C})$

- We seek matrices such that $e^{tX} \in SL(n, \mathbb{C})$, that is $\det(e^{tX}) = 1$.
- We can show that for a general X, we have that $\det(e^X) = e^{tr(X)}$.

\det represents the determinant.
Example: Computing the Lie Algebra of \(SL(n, \mathbb{C}) \)

- We seek matrices such that \(e^{tX} \in SL(n, \mathbb{C}) \), that is \(\det(e^{tX}) = 1 \).
- We can show that for a general \(X \), we have that \(\det(e^X) = e^{tr(X)} \).
- Thus, \(\det(e^{tX}) = e^{t \cdot tr(X)} \).
Example: Computing the Lie Algebra of $SL(n, \mathbb{C})$

- We seek matrices such that $e^{tX} \in SL(n, \mathbb{C})$, that is $\det(e^{tX}) = 1$.
- We can show that for a general X, we have that $\det(e^X) = e^{tr(X)}$.
- Thus, $\det(e^{tX}) = e^{t \cdot tr(X)}$. So if $tr(X) = 0$ then $e^{t \cdot tr(X)} = 1$, and so $\det(e^{tX}) = 1$ as well.
Example: Computing the Lie Algebra of $SL(n, \mathbb{C})$

- We seek matrices such that $e^{tX} \in SL(n, \mathbb{C})$, that is $\det(e^{tX}) = 1$.

- We can show that for a general X, we have that $\det(e^{X}) = e^{tr(X)}$.

- Thus, $\det(e^{tX}) = e^{t \cdot tr(X)}$. So if $tr(X) = 0$ then $e^{t \cdot tr(X)} = 1$, and so $\det(e^{tX}) = 1$ as well. So X is in the associated Lie Algebra.

- Conversely, suppose that $\det(e^{tX}) = 1 = e^{t \cdot tr(X)}$. Then differentiating with respect to t we get that $tr(X) = \frac{d}{dt}[e^{t \cdot tr(X)}]_{t=0} = 0$.

- So $e^{tX} \in SL(n, \mathbb{C})$ if and only if $tr(X) = 0$. We denote the set of traceless matrices $sl(n, \mathbb{C})$. This is the Lie Algebra of $SL(n, \mathbb{C})$!
Example: Computing the Lie Algebra of $SL(n, \mathbb{C})$

- We seek matrices such that $e^{tX} \in SL(n, \mathbb{C})$, that is $\det(e^{tX}) = 1$.
- We can show that for a general X, we have that $\det(e^X) = e^{tr(X)}$.
- Thus, $\det(e^{tX}) = e^{t \cdot tr(X)}$. So if $tr(X) = 0$ then $e^{t \cdot tr(X)} = 1$, and so $\det(e^{tX}) = 1$ as well. So X is in the associated Lie Algebra.
- Conversely, suppose that $\det(e^{tX}) = 1 = e^{t \cdot tr(X)}$.

Example: Computing the Lie Algebra of $SL(n, \mathbb{C})$

- We seek matrices such that $e^{tX} \in SL(n, \mathbb{C})$, that is $\det(e^{tX}) = 1$.

- We can show that for a general X, we have that $\det(e^X) = e^{tr(X)}$.

- Thus, $\det(e^{tX}) = e^{t \cdot tr(X)}$. So if $tr(X) = 0$ then $e^{t \cdot tr(X)} = 1$, and so $\det(e^{tX}) = 1$ as well. So X is in the associated Lie Algebra.

- Conversely, suppose that $\det(e^{tX}) = 1 = e^{t \cdot tr(X)}$. Then differentiating with respect to t we get that
Example: Computing the Lie Algebra of $SL(n, \mathbb{C})$

- We seek matrices such that $e^{tX} \in SL(n, \mathbb{C})$, that is $\det(e^{tX}) = 1$.
- We can show that for a general X, we have that $\det(e^X) = e^{tr(X)}$.
- Thus, $\det(e^{tX}) = e^{t \cdot tr(X)}$. So if $tr(X) = 0$ then $e^{t \cdot tr(X)} = 1$, and so $\det(e^{tX}) = 1$ as well. So X is in the associated Lie Algebra.
- Conversely, suppose that $\det(e^{tX}) = 1 = e^{t \cdot tr(X)}$. Then differentiating with respect to t we get that

$$tr(X) = \frac{d}{dt} \left[e^{t \cdot tr(X)} \right]_{t=0} = 0$$
Example: Computing the Lie Algebra of $SL(n, \mathbb{C})$

- We seek matrices such that $e^{tX} \in SL(n, \mathbb{C})$, that is $\det(e^{tX}) = 1$.
- We can show that for a general X, we have that $\det(e^{X}) = e^{\text{tr}(X)}$.
- Thus, $\det(e^{tX}) = e^{t \cdot \text{tr}(X)}$. So if $\text{tr}(X) = 0$ then $e^{t \cdot \text{tr}(X)} = 1$, and so $\det(e^{tX}) = 1$ as well. So X is in the associated Lie Algebra.
- Conversely, suppose that $\det(e^{tX}) = 1 = e^{t \cdot \text{tr}(X)}$. Then differentiating with respect to t we get that

$$\text{tr}(X) = \frac{d}{dt} \left[e^{t \cdot \text{tr}(X)} \right]_{t=0} = 0$$

- So $e^{tX} \in SL(n, \mathbb{C})$ if and only if $\text{tr}(X) = 0$.
Example: Computing the Lie Algebra of $SL(n, \mathbb{C})$

- We seek matrices such that $e^{tX} \in SL(n, \mathbb{C})$, that is $\det(e^{tX}) = 1$.
- We can show that for a general X, we have that $\det(e^{X}) = e^{tr(X)}$.
- Thus, $\det(e^{tX}) = e^{t \cdot tr(X)}$. So if $tr(X) = 0$ then $e^{t \cdot tr(X)} = 1$, and so $\det(e^{tX}) = 1$ as well. So X is in the associated Lie Algebra.
- Conversely, suppose that $\det(e^{tX}) = 1 = e^{t \cdot tr(X)}$. Then differentiating with respect to t we get that

$$tr(X) = \frac{d}{dt} \left[e^{t \cdot tr(X)} \right]_{t=0} = 0$$

- So $e^{tX} \in SL(n, \mathbb{C})$ if and only if $tr(X) = 0$. We denote the set of traceless matrices $sl(n, \mathbb{C})$. This is the Lie Algebra of $SL(n, \mathbb{C})$!
Representations

A Representation of a Lie Algebra g is a Lie Algebra Homomorphism $\pi: g \rightarrow gl(V)$. Here, a Lie Algebra Homomorphism is a linear map that preserves the bracket:

$$\pi([X, Y]) = [\pi(X), \pi(Y)].$$

Every Lie Algebra g has a natural representation given by the adjoint mapping:

$$\rho: g \rightarrow gl(g), \rho(X) = [X, \cdot].$$

Let us study this representation further.
Representations

Definition
A Representation of a Lie Algebra \mathfrak{g} is a Lie Algebra Homomorphism $\pi : \mathfrak{g} \rightarrow gl(V)$. Here, a Lie Algebra Homomorphism is a linear map that preserves the bracket:

$$\pi([X,Y]) = [\pi(X),\pi(Y)].$$

Every Lie Algebra \mathfrak{g} has a natural representation given by the adjoint mapping: $\rho : \mathfrak{g} \rightarrow gl(\mathfrak{g})$, $\rho(X) = [X,\cdot]$. Let us study this representation further.
Representations

Definition
A Representation of a Lie Algebra \(\mathfrak{g} \) is a Lie Algebra Homomorphism \(\pi : \mathfrak{g} \to gl(V) \). Here, a Lie Algebra Homomorphism is a linear map that preserves the bracket:

\[
\pi([X, Y]) = [\pi(X), \pi(Y)]
\]
Representations

Definition
A Representation of a Lie Algebra \mathfrak{g} is a Lie Algebra Homomorphism $\pi: \mathfrak{g} \to gl(V)$. Here, a Lie Algebra Homomorphism is a linear map that preserves the bracket:

$$\pi([X, Y]) = [\pi(X), \pi(Y)]$$

Every Lie Algebra \mathfrak{g} has a natural representation given by the adjoint mapping: $\rho: \mathfrak{g} \to gl(\mathfrak{g})$, $\rho(X) = [X, \cdot]$.
Representations

Definition
A Representation of a Lie Algebra \mathfrak{g} is a Lie Algebra Homomorphism $\pi : \mathfrak{g} \to gl(V)$. Here, a Lie Algebra Homomorphism is a linear map that preserves the bracket:

$$\pi([X, Y]) = [\pi(X), \pi(Y)]$$

Every Lie Algebra \mathfrak{g} has a natural representation given by the adjoint mapping: $\rho : \mathfrak{g} \to gl(\mathfrak{g}), \rho(X) = [X, \cdot]$. Let us study this representation further.
Direct Sum Decompositions

Let us suppose that g has no nonzero abelian ideals. Then g has a maximal abelian subalgebra h called its Cartan subalgebra. A nonzero $\alpha \in h$ is called a root if there is a nonzero $X \in g$ such that $[H,X] = \alpha(H)X = \langle \alpha, H \rangle X$ for each $H \in h$. The set of roots is denoted R. An X that satisfies the above is called a root vector. The set g_α of vectors X that satisfy the above property is called the root space w.r.t α.

We can actually decompose g into a direct sum of its root spaces:

$$g = h \oplus \bigoplus_{\alpha \in R} g_\alpha$$
Direct Sum Decompositions

- Let us suppose that \(g \) has no nonzero abelian ideals.

\[
\text{Then } g \text{ has a maximal abelian subalgebra } h \text{ called its Cartan subalgebra.}
\]

A nonzero \(\alpha \in h \) is called a \textit{root} if there is a nonzero \(X \in g \)

\[
[H, X] = \alpha(H)X = \langle \alpha, H \rangle X
\]

for each \(H \in h \).

The set of roots is denoted \(R \). An \(X \) that satisfies the above is called a \textit{root vector}.

The set \(g_\alpha \) of vectors \(X \) that satisfy the above property is called the \textit{root space} w.r.t \(\alpha \).

- We can actually decompose \(g \) into a direct sum of its root spaces:

\[
g = h \oplus \bigoplus_{\alpha \in R} g_\alpha
\]
Direct Sum Decompositions

- Let us suppose that g has no nonzero abelian ideals.
- Then g has a maximal abelian subalgebra \mathfrak{h} called its Cartan subalgebra.

A nonzero $\alpha \in \mathfrak{h}$ is called a root if there is a nonzero $X \in g$ such that $[H, X] = \alpha(H)X = \langle \alpha, H \rangle X$ for each $H \in \mathfrak{h}$. The set of roots is denoted \mathcal{R}. An X that satisfies the above is called a root vector. The set g_α of vectors X that satisfy the above property is called the root space w.r.t α.

We can actually decompose g into a direct sum of its root spaces: $g = \mathfrak{h} \oplus \bigoplus_{\alpha \in \mathcal{R}} g_\alpha$.
Direct Sum Decompositions

- Let us suppose that g has no nonzero abelian ideals.
- Then g has a maximal abelian subalgebra \mathfrak{h} called its Cartan subalgebra.
- A nonzero $\alpha \in \mathfrak{h}$ is called a root if there is a nonzero $X \in g$

\[[H, X] = \alpha(H)X = \langle \alpha, H \rangle X \]

for each $H \in \mathfrak{h}$.
Direct Sum Decompositions

- Let us suppose that \(g \) has no nonzero abelian ideals.
- Then \(g \) has a maximal abelian subalgebra \(\mathfrak{h} \) called its Cartan subalgebra.
- A nonzero \(\alpha \in \mathfrak{h} \) is called a root if there is a nonzero \(X \in g \)

\[
[H, X] = \alpha(H)X = \langle \alpha, H \rangle X
\]

for each \(H \in \mathfrak{h} \). The set of roots is denoted \(R \). An \(X \) that satisfies the above is called a root vector.
Direct Sum Decompositions

- Let us suppose that \(g \) has no nonzero abelian ideals.
- Then \(g \) has a maximal abelian subalgebra \(h \) called its Cartan subalgebra.
- A nonzero \(\alpha \in h \) is called a root if there is a nonzero \(X \in g \)

\[
[H, X] = \overline{\alpha}(H)X = \langle \alpha, H \rangle X
\]

for each \(H \in h \). The set of roots is denoted \(R \). An \(X \) that satisfies the above is called a root vector. The set \(g_\alpha \) of vectors \(X \) that satisfy the above property is called the root space w.r.t \(\alpha \).
Let us suppose that g has no nonzero abelian ideals.

Then g has a maximal abelian subalgebra h called its Cartan subalgebra.

A nonzero $\alpha \in h$ is called a **root** if there is a nonzero $X \in g$

$$[H, X] = \overline{\alpha}(H)X = \langle \alpha, H \rangle X$$

for each $H \in h$. The set of roots is denoted R. An X that satisfies the above is called a **root vector**. The set g_α of vectors X that satisfy the above property is called the **root space** w.r.t α.

We can actually decompose g into a direct sum of its root spaces
Direct Sum Decompositions

Let us suppose that g has no nonzero abelian ideals.

Then g has a maximal abelian subalgebra \mathfrak{h} called its Cartan subalgebra.

A nonzero $\alpha \in \mathfrak{h}$ is called a \textbf{root} if there is a nonzero $X \in g$

$$[H, X] = \alpha(H)X = \langle \alpha, H \rangle X$$

for each $H \in \mathfrak{h}$. The set of roots is denoted R. An X that satisfies the above is called a \textbf{root vector}. The set g_α of vectors X that satisfy the above property is called the \textbf{root space} w.r.t α.

We can actually decompose g into a direct sum of its root spaces:

$$g = \mathfrak{h} \oplus \bigoplus_{\alpha \in R} g_\alpha$$
An Example in $sl(3, \mathbb{C})$
An Example in $sl(3, \mathbb{C})$

Let us choose the basis:

$$H_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

$$H_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix},$$

$$X_1 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

$$X_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

$$X_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

$$Y_1 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

$$Y_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},$$

$$Y_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$
An Example in $sl(3, \mathbb{C})$

Let us choose the basis:

$$H_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad H_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad X_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad X_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$Y_1 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad Y_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad Y_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Here, our Cartan subalgebra is $h = \text{span}\{H_1, H_2\}$.
An Example in $sl(3,\mathbb{C})$

Let us choose the basis:

$$H_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad H_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad X_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad X_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$Y_1 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad Y_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad Y_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Here, our Cartan subalgebra is $\mathfrak{h} = \text{span}\{H_1, H_2\}$.
An Example In $sl(3, \mathbb{C})$ (cont.)

Using the above basis, we see that
\[
\begin{align*}
[H_1, X_1] &= 2X_1, \\
[H_2, X_1] &= -X_1
\end{align*}
\]

Because H_1, H_2 serve as a basis for h, for any $H \in h$, $H = aH_1 + bH_2$, and so we have
\[
[H, X_1] = (2a - b)X_1
\]

So X_1 is a root vector, corresponding to the root $\alpha(H) = \alpha(aH_1 + bH_2) = 2a - b$.
An Example In $sl(3, \mathbb{C})$ (cont.)

Using the above basis, we see that

$$\begin{align*}
\left[H_1, X_1 \right] &= 2X_1, \\
\left[H_2, X_1 \right] &= -X_1,
\end{align*}$$

Because H_1, H_2 serve as a basis for h, for any $H \in h$, $H = aH_1 + bH_2$, and so we have

$$\begin{align*}
\left[H, X_1 \right] &= (2a - b)X_1.
\end{align*}$$

So X_1 is a root vector, corresponding to the root $\alpha(H) = \alpha(aH_1 + bH_2) = 2a - b$.

An Example In $sl(3, \mathbb{C})$ (cont.)

Using the above basis, we see that

$$[H_1, X_1] = 2X_1, [H_2, X_1] = -X_1$$
An Example In $sl(3, \mathbb{C})$ (cont.)

Using the above basis, we see that

$$[H_1, X_1] = 2X_1, [H_2, X_1] = -X_1$$

Because H_1, H_2 serve as a basis for \mathfrak{h}, for any $H \in \mathfrak{h}$, $H = aH_1 + bH_2$, and so we have
Using the above basis, we see that

\[
\begin{align*}
[H_1, X_1] &= 2X_1, \\
[H_2, X_1] &= -X_1
\end{align*}
\]

Because \(H_1, H_2 \) serve as a basis for \(\mathfrak{h} \), for any \(H \in \mathfrak{h} \), \(H = aH_1 + bH_2 \), and so we have

\[
[H, X_1] = (2a - b)X_1
\]
An Example In $sl(3, \mathbb{C})$ (cont.)

Using the above basis, we see that

$$[H_1, X_1] = 2X_1, [H_2, X_1] = -X_1$$

Because H_1, H_2 serve as a basis for \mathfrak{h}, for any $H \in \mathfrak{h}$, $H = aH_1 + bH_2$, and so we have

$$[H, X_1] = (2a - b)X_1$$

So X_1 is a root vector, corresponding to the root $\bar{\alpha}(H) = \bar{\alpha}(aH_1 + bH_2) = 2a - b$.

Root Systems

Definition

A root system \((E, R)\) is a finite-dimensional real vector space \(E\) with an inner product \(\langle \cdot, \cdot \rangle\) together with a finite set of nonzero vectors \(R \subseteq E\) such that

- \(R\) spans \(E\)
- If \(\alpha \in R\) and \(c \in R\), then \(c\alpha \in R\) only if \(c = \pm 1\)
- If \(\alpha, \beta \in R\), then so is \(\beta - 2\frac{\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle}\alpha\)
- For every \(\alpha, \beta \in R\), \(2\frac{\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}\)
Root Systems

Definition
A root system \((E, R)\) is a finite-dimensional real vector space \(E\) with an inner product \(\langle \cdot, \cdot \rangle\) together with a finite set of nonzero vectors \(R \subseteq E\) such that:

1. \(R\) spans \(E\)
2. If \(\alpha \in R\) and \(c \in \mathbb{R}\), then \(c \alpha \in R\) only if \(c = \pm 1\)
3. If \(\alpha, \beta \in R\), then so is \(\beta - 2 \langle \beta, \alpha \rangle \langle \alpha, \alpha \rangle \alpha\)
4. For every \(\alpha, \beta \in R\), \(2 \langle \beta, \alpha \rangle \langle \alpha, \alpha \rangle \in \mathbb{Z}\)
Root Systems

Definition
A root system \((E, R)\) is a finite-dimensional real vector space \(E\) with an inner product \(\langle \cdot, \cdot \rangle\) together with a finite set of nonzero vectors \(R \subseteq E\) such that

- \(R\) spans \(E\)

For every \(\alpha, \beta \in R\),

\[
2 \langle \beta, \alpha \rangle \langle \alpha, \alpha \rangle \in \mathbb{Z}
\]
Root Systems

Definition
A root system \((E, R)\) is a finite-dimensional real vector space \(E\) with an inner product \(\langle \cdot, \cdot \rangle\) together with a finite set of nonzero vectors \(R \subseteq E\) such that
- \(R\) spans \(E\)
- If \(\alpha \in R\) and \(c \in \mathbb{R}\), then \(c\alpha \in R\) only if \(c = \pm 1\)
- If \(\alpha, \beta \in R\), then so is \(\beta - 2\langle\beta, \alpha\rangle\frac{\alpha}{\langle\alpha, \alpha\rangle}\alpha\)
- For every \(\alpha, \beta \in R\), \(2\langle\beta, \alpha\rangle\frac{\alpha}{\langle\alpha, \alpha\rangle} \in \mathbb{Z}\)
Root Systems

Definition
A root system \((E, R)\) is a finite-dimensional real vector space \(E\) with an inner product \langle \cdot, \cdot \rangle\) together with a finite set of nonzero vectors \(R \subseteq E\) such that

- \(R\) spans \(E\)
- If \(\alpha \in R\) and \(c \in \mathbb{R}\), then \(c\alpha \in R\) only if \(c = \pm 1\)
- If \(\alpha, \beta \in R\), then so is \(\beta - 2\frac{\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha\)
- For every \(\alpha, \beta \in R\), \(2\frac{\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}\)
Root Systems

Definition
A root system \((E, R)\) is a finite-dimensional real vector space \(E\) with an inner product \(\langle \cdot, \cdot \rangle\) together with a finite set of nonzero vectors \(R \subseteq E\) such that

- \(R\) spans \(E\)
- If \(\alpha \in R\) and \(c \in \mathbb{R}\), then \(c\alpha \in R\) only if \(c = \pm 1\)
- If \(\alpha, \beta \in R\), then so is

\[
\beta - 2 \frac{\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha
\]
Root Systems

Definition
A root system \((E, R)\) is a finite-dimensional real vector space \(E\) with an inner product \(\langle \cdot, \cdot \rangle\) together with a finite set of nonzero vectors \(R \subseteq E\) such that

- \(R\) spans \(E\)
- If \(\alpha \in R\) and \(c \in \mathbb{R}\), then \(c\alpha \in R\) only if \(c = \pm 1\)
- If \(\alpha, \beta \in R\), then so is

\[
\beta - 2\frac{\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha
\]

- For every \(\alpha, \beta \in R\),
Root Systems

Definition
A root system \((E, R)\) is a finite-dimensional real vector space \(E\) with an inner product \(\langle \cdot, \cdot \rangle\) together with a finite set of nonzero vectors \(R \subseteq E\) such that

- \(R\) spans \(E\)
- If \(\alpha \in R\) and \(c \in \mathbb{R}\), then \(c\alpha \in R\) only if \(c = \pm 1\)
- If \(\alpha, \beta \in R\), then so is
 \[
 \beta - 2 \frac{\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha
 \]
- For every \(\alpha, \beta \in R\),
 \[
 2 \frac{\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}
 \]
Possible Root Configurations

Suppose \(\alpha, \beta \) are roots that are not colinear and \(\theta \) is the angle between them. Further, suppose \(\langle \alpha, \alpha \rangle \geq \langle \beta, \beta \rangle \).

Then one of the following is true:

\[\langle \alpha, \beta \rangle = 0. \]

\[\langle \alpha, \alpha \rangle = \langle \beta, \beta \rangle \text{ and } \theta = \frac{\pi}{3}, \frac{2\pi}{3}. \]

\[\langle \alpha, \alpha \rangle = 2 \langle \beta, \beta \rangle \text{ and } \theta = \frac{\pi}{4}, \frac{3\pi}{4}. \]

\[\langle \alpha, \alpha \rangle = 3 \langle \beta, \beta \rangle \text{ and } \theta = \frac{\pi}{6}, \frac{5\pi}{6}. \]
Suppose α, β are roots that are not colinear and θ is the angle between them. Further, suppose $\langle \alpha, \alpha \rangle \geq \langle \beta, \beta \rangle$. Then one of the following is true:

$\langle \alpha, \beta \rangle = 0$.

$\langle \alpha, \alpha \rangle = \langle \beta, \beta \rangle$ and $\theta = \frac{\pi}{3}, \frac{2\pi}{3}$.

$\langle \alpha, \alpha \rangle = 2 \langle \beta, \beta \rangle$ and $\theta = \frac{\pi}{4}, \frac{3\pi}{4}$.

$\langle \alpha, \alpha \rangle = 3 \langle \beta, \beta \rangle$ and $\theta = \frac{\pi}{6}, \frac{5\pi}{6}$.
Possible Root Configurations

Suppose α, β are roots that are not colinear and θ is the angle between them. Further, suppose $\langle \alpha, \alpha \rangle \geq \langle \beta, \beta \rangle$. Then one of the following is true:
Possible Root Configurations

Suppose α, β are roots that are not colinear and θ is the angle between them. Further, suppose $\langle \alpha, \alpha \rangle \geq \langle \beta, \beta \rangle$. Then one of the following is true:

- $\langle \alpha, \beta \rangle = 0$.

- $\langle \alpha, \alpha \rangle = \langle \beta, \beta \rangle$ and $\theta = \frac{\pi}{3}, \frac{2\pi}{3}$.

- $\langle \alpha, \alpha \rangle = 2 \langle \beta, \beta \rangle$ and $\theta = \frac{\pi}{4}, \frac{3\pi}{4}$.

- $\langle \alpha, \alpha \rangle = 3 \langle \beta, \beta \rangle$ and $\theta = \frac{\pi}{6}, \frac{5\pi}{6}$.
Possible Root Configurations

Suppose α, β are roots that are not colinear and θ is the angle between them. Further, suppose $\langle \alpha, \alpha \rangle \geq \langle \beta, \beta \rangle$. Then one of the following is true:

- $\langle \alpha, \beta \rangle = 0$.
- $\langle \alpha, \alpha \rangle = \langle \beta, \beta \rangle$ and $\theta = \frac{\pi}{3}, \frac{2\pi}{3}$.
- $\langle \alpha, \alpha \rangle = 3\langle \beta, \beta \rangle$ and $\theta = \frac{\pi}{6}, \frac{5\pi}{6}$.
Suppose α, β are roots that are not colinear and θ is the angle between them. Further, suppose $\langle \alpha, \alpha \rangle \geq \langle \beta, \beta \rangle$. Then one of the following is true:

- $\langle \alpha, \beta \rangle = 0$.
- $\langle \alpha, \alpha \rangle = \langle \beta, \beta \rangle$ and $\theta = \frac{\pi}{3}, \frac{2\pi}{3}$.
- $\langle \alpha, \alpha \rangle = 2\langle \beta, \beta \rangle$ and $\theta = \frac{\pi}{4}, \frac{3\pi}{4}$.
Possible Root Configurations

Suppose α, β are roots that are not colinear and θ is the angle between them. Further, suppose $\langle \alpha, \alpha \rangle \geq \langle \beta, \beta \rangle$. Then one of the following is true:

- $\langle \alpha, \beta \rangle = 0$.
- $\langle \alpha, \alpha \rangle = \langle \beta, \beta \rangle$ and $\theta = \frac{\pi}{3}, \frac{2\pi}{3}$.
- $\langle \alpha, \alpha \rangle = 2\langle \beta, \beta \rangle$ and $\theta = \frac{\pi}{4}, \frac{3\pi}{4}$.
- $\langle \alpha, \alpha \rangle = 3\langle \beta, \beta \rangle$ and $\theta = \frac{\pi}{6}, \frac{5\pi}{6}$.
Rank 2 Root Configurations

\[A_1 \times A_1 \]
\[A_2 \]
\[B_2 \]
\[G_2 \]
General Root Configurations

Definition

Given a root system \((E, R)\), \(\Delta \subseteq R\) is a base if
\(\nabla \Delta\) is a basis for \(E\). Each \(\alpha \in R\) can be expressed as a linear combination of elements of \(\Delta\) with either all non-negative or non-positive integer coefficients.

Elements of \(\Delta\) are called positive simple roots.

Given a base \(\Delta = \{\alpha_1, \ldots, \alpha_n\}\), we can understand the root system via the values of \(\langle \alpha_i, \alpha_j \rangle\) for \(i \neq j\) and the relative sizes of \(||\alpha_i||\).

These are encoded in Dynkin Diagrams.
General Root Configurations

Definition
Given a root system \((E, R), \Delta \subseteq R\) is a base if

- Each \(\alpha \in R\) can be expressed as a linear combination of elements of \(\Delta\) with either all non-negative or non-positive integer coefficients.
- Elements of \(\Delta\) are called positive simple roots.

Given a base \(\Delta = \{\alpha_1, \ldots, \alpha_n\}\), we can understand the root system via the values of \(\langle \alpha_i, \alpha_j \rangle\) for \(i \neq j\) and the relative sizes of \(||\alpha_i||\). These are encoded in Dynkin Diagrams.
General Root Configurations

Definition
Given a root system \((E, R), \Delta \subseteq R\) is a base if

- \(\Delta\) is a basis for \(E\)
General Root Configurations

Definition
Given a root system \((E, R), \Delta \subseteq R\) is a \textbf{base} if

- \(\Delta\) is a basis for \(E\)
- Each \(\alpha \in R\) can be expressed as a linear combination of elements of \(\Delta\) with either all non-negative or non-positive integer coefficients.

Elements of \(\Delta\) are called positive simple roots.

Given a base \(\Delta = \{\alpha_1, \ldots, \alpha_n\}\), we can understand the root system via the values of \(\langle \alpha_i, \alpha_j \rangle\) for \(i \neq j\) and the relative sizes of \(||\alpha_i||\). These are encoded in Dynkin Diagrams.
Definition
Given a root system \((E, R)\), \(\Delta \subseteq R\) is a base if

- \(\Delta\) is a basis for \(E\)
- Each \(\alpha \in R\) can be expressed as a linear combination of elements of \(\Delta\) with either all non-negative or non-positive integer coefficients.

Elements of \(\Delta\) are called positive simple roots.
Definition
Given a root system \((E, R), \Delta \subseteq R\) is a **base** if

- \(\Delta\) is a basis for \(E\)
- Each \(\alpha \in R\) can be expressed as a linear combination of elements of \(\Delta\) with either all non-negative or non-positive integer coefficients.

Elements of \(\Delta\) are called positive simple roots.

Given a base \(\Delta = \{\alpha_1, \ldots, \alpha_n\}\), we can understand the root system via the values of \(\langle \alpha_i, \alpha_j \rangle\) for \(i \neq j\) and the relative sizes of the \(||\alpha_i||\).
General Root Configurations

Definition
Given a root system \((E, R), \Delta \subseteq R\) is a base if

- \(\Delta\) is a basis for \(E\)
- Each \(\alpha \in R\) can be expressed as a linear combination of elements of \(\Delta\) with either all non-negative or non-positive integer coefficients.

Elements of \(\Delta\) are called positive simple roots.

Given a base \(\Delta = \{\alpha_1, \ldots, \alpha_n\}\), we can understand the root system via the values of \(\langle \alpha_i, \alpha_j \rangle\) for \(i \neq j\) and the relative sizes of the \(\|\alpha_i\|\). These are encoded in Dynkin Diagrams.
Dynkin Diagrams

- Set a vertex i for each $\alpha_i \in \Delta$.
- The number of edges connected vertex i and vertex j is equal to the value of $\langle \alpha_i, \alpha_j \rangle$.
 - Namely, this encodes the information about the angle between α_i and α_j.
 - For instance, if there is one edge between α_1 and α_2 then the angle between them is $\frac{2\pi}{3}$.
- Add arrows ($>$ or $<$) on the edges connecting vertices i and j to encode whether $||\alpha_i|| > ||\alpha_j||$.

Theorem

If (E, R) is a root system with $\dim(E) = \ell$, then its Dynkin Diagram is one of the following.
Dynkin Diagrams

- Set a vertex i for each $\alpha_i \in \Delta$.
Dynkin Diagrams

- Set a vertex i for each $\alpha_i \in \Delta$.
- The number of edges connected vertex i and vertex j is equal to the value of $\langle \alpha_i, \alpha_j \rangle$.

For instance, if there is one edge between α_1 and α_2 then the angle between them is $\frac{2\pi}{3}$.

- Add arrows (\(>\) or \(<\)) on the edges connecting vertices i and j to encode whether $||\alpha_i|| > ||\alpha_j||$.

Theorem
If \((E, R)\) is a root system with $\dim(E) = \ell$, then its Dynkin Diagram is one of the following.
Dynkin Diagrams

- Set a vertex i for each $\alpha_i \in \Delta$.
- The number of edges connected vertex i and vertex j is equal to the value of $\langle \alpha_i, \alpha_j \rangle$. Namely, this encodes the information about the angle between α_i and α_j. For instance, if there is one edge between α_1 and α_2 then the angle between them is $\frac{2\pi}{3}$.
- Add arrows (\textgreater or \textless) on the edges connecting vertices i and j to encode whether $||\alpha_i|| > ||\alpha_j||$. Theorem: If (E, R) is a root system with $\text{dim}(E) = \ell$, then its Dynkin Diagram is one of the following.
Dynkin Diagrams

- Set a vertex i for each $\alpha_i \in \Delta$.
- The number of edges connected vertex i and vertex j is equal to the value of $\langle \alpha_i, \alpha_j \rangle$. Namely, this encodes the information about the angle between α_i and α_j. For instance, if there is one edge between α_1 and α_2 then the angle between them is $\frac{2\pi}{3}$.

Theorem

If (E, R) is a root system with dim$(E) = \ell$, then its Dynkin Diagram is one of the following.
Dynkin Diagrams

- Set a vertex i for each $\alpha_i \in \Delta$.
- The number of edges connected vertex i and vertex j is equal to the value of $\langle \alpha_i, \alpha_j \rangle$. Namely, this encodes the information about the angle between α_i and α_j. For instance, if there is one edge between α_1 and α_2 then the angle between them is $\frac{2\pi}{3}$.
- Add arrows ($>$ or $<$) on the edges connecting vertices i and j to encode whether $||\alpha_i|| > ||\alpha_j||$.

Theorem

If (E, R) is a root system with $\text{dim}(E) = \ell$, then its Dynkin Diagram is one of the following.
Dynkin Diagrams

- Set a vertex \(i \) for each \(\alpha_i \in \Delta \).
- The number of edges connected vertex \(i \) and vertex \(j \) is equal to the value of \(\langle \alpha_i, \alpha_j \rangle \). Namely, this encodes the information about the angle between \(\alpha_i \) and \(\alpha_j \). For instance, if there is one edge between \(\alpha_1 \) and \(\alpha_2 \) then the angle between them is \(\frac{2\pi}{3} \).
- Add arrows (\(> \) or \(< \)) on the edges connecting vertices \(i \) and \(j \) to encode whether \(||\alpha_i|| > ||\alpha_j|| \).

Theorem

If \((E, R)\) is a root system with \(\dim(E) = \ell \), then its Dynkin Diagram is one of the following.
Dynkin Diagrams (cont.)

A_ℓ ($\ell \geq 1$):

B_ℓ ($\ell \geq 2$):

C_ℓ ($\ell \geq 3$):

D_ℓ ($\ell \geq 4$):

E_6:

E_7:

E_8:

F_4:

G_2:
Lie Algebras and Fantastic Results

A Lie Algebra's roots correspond to a root system. Namely,

\((E, R) = (h, R)\).

We can classify root systems, so we can classify semisimple Lie Algebras.

"Fantastic Theorem": given an abstract root system, there is a unique (up to isomorphism) semisimple Lie Algebra over \(\mathbb{C}\) which has this abstract system as its root system.

Two semisimple, complex Lie Algebras are isomorphic if and only if their root systems are isomorphic!
Lie Algebras and Fantastic Results

- A Lie Algebra’s roots correspond to a root system.

[Equation]: \((E, R) = (h, R) \).

We can classify root systems, so we can classify semisimple Lie Algebras.

"Fantastic Theorem": given an abstract root system, there is a unique (up to isomorphism) semisimple Lie Algebra over \(\mathbb{C} \) which has this abstract system as its root system.

Two semisimple, complex Lie Algebras are isomorphic if and only if their root systems are isomorphic!
A Lie Algebra’s roots correspond to a root system. Namely,
\((E, R) = (\mathfrak{h}, R)\).
A Lie Algebra’s roots correspond to a root system. Namely, $(E, R) = (\mathfrak{h}, R)$.

We can classify root systems
Lie Algebras and Fantastic Results

- A Lie Algebra’s roots correspond to a root system. Namely, $(E, R) = (\mathfrak{h}, R)$.
- We can classify root systems, so we can classify semisimple Lie Algebras.
Lie Algebras and Fantastic Results

- A Lie Algebra’s roots correspond to a root system. Namely, \((E, R) = (\mathfrak{h}, R)\).
- We can classify root systems, so we can classify semisimple Lie Algebras.
- “Fantastic Theorem”: given an abstract root system, there is a unique (up to isomorphism) semisimple Lie Algebra over \(\mathbb{C}\) which has this abstract system as its root system.
- Two semisimple, complex Lie Algebras are isomorphic if and only if their root systems are isomorphic!
Lie Algebras and Fantastic Results

- A Lie Algebra’s roots correspond to a root system. Namely, \((E, R) = (\mathfrak{h}, R)\).
- We can classify root systems, so we can classify semisimple Lie Algebras
- "Fantastic Theorem": given an abstract root system, there is a unique (up to isomorphism) semisimple Lie Algebra over \(\mathbb{C}\) which has this abstract system as its root system.
A Lie Algebra’s roots correspond to a root system. Namely, \((E, R) = (\mathfrak{h}, R)\).

We can classify root systems, so we can classify semisimple Lie Algebras.

"Fantastic Theorem": given an abstract root system, there is a unique (up to isomorphism) semisimple Lie Algebra over \(\mathbb{C}\) which has this abstract system as its root system.

Two semisimple, complex Lie Algebras are isomorphic if and only if their root systems are isomorphic!
General Representations

Throughout this talk we studied the "natural" representation $\rho(X) = [X, \cdot]$. The above discussion generalizes to any representation $\pi: g \rightarrow \mathfrak{gl}(V)$.

Roots become weights, we can decompose V into a direct sum of weight spaces $V = \bigoplus_{\lambda \in h^*} V_\lambda$. Weights will have certain configurations, etc.

This allows us to classify the representations of a Lie Algebra g to a finite-dimensional vector space V. Through study of the weight lattice and root lattice (the \mathbb{Z}-span of the weights/roots respectively), we have that weight lattice/root lattice is a finite group.
General Representations

- Throughout this talk we studied the “natural” representation \(\rho(X) = [X, \cdot] \).
General Representations

- Throughout this talk we studied the "natural" representation \(\rho(X) = [X, \cdot] \).
- The above discussion generalizes to any representation \(\pi : g \to gl(V) \).
General Representations

Throughout this talk we studied the "natural" representation $\rho(X) = [X, \cdot]$.

The above discussion generalizes to any representation $\pi : g \to gl(V)$.

Roots become weights, we can decompose V into a direct sum of weight spaces.
General Representations

Throughout this talk we studied the ”natural” representation $\rho(X) = [X, \cdot]$.

The above discussion generalizes to any representation $\pi : \mathfrak{g} \to gl(V)$.

Roots become weights, we can decompose V into a direct sum of weight spaces

$$V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda}$$
Throughout this talk we studied the ”natural” representation $\rho(X) = [X, \cdot]$. The above discussion generalizes to any representation $\pi : \mathfrak{g} \to gl(V)$. Roots become weights, we can decompose V into a direct sum of weight spaces $V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda}$ weights will have certain configurations, etc.
General Representations

Throughout this talk we studied the "natural" representation
\[\rho(X) = [X, \cdot]. \]

The above discussion generalizes to any representation
\[\pi : \mathfrak{g} \to gl(V). \]

Roots become weights, we can decompose \(V \) into a direct sum of weight spaces
\[V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_\lambda \]
weights will have certain configurations, etc.

This allows us to classify the representations of a Lie Algebra \(\mathfrak{g} \) to a finite-dimensional vector space \(V \).
General Representations

Throughout this talk we studied the "natural" representation $\rho(X) = [X, \cdot]$.

The above discussion generalizes to any representation $\pi : \mathfrak{g} \to gl(V)$.

Roots become weights, we can decompose V into a direct sum of weight spaces

$$V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_\lambda$$

weights will have certain configurations, etc.

This allows us to classify the representations of a Lie Algebra \mathfrak{g} to a finite-dimensional vector space V.

Through study of the weight lattice and root lattice (the \mathbb{Z}-span of the weights/roots respectively)
General Representations

- Throughout this talk we studied the "natural" representation $\rho(X) = [X, \cdot]$.
- The above discussion generalizes to any representation $\pi : \mathfrak{g} \to gl(V)$.
- Roots become weights, we can decompose V into a direct sum of weight spaces

$$V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_\lambda$$

weights will have certain configurations, etc.
- This allows us to classify the representations of a Lie Algebra \mathfrak{g} to a finite-dimensional vector space V.
- Through study of the weight lattice and root lattice (the \mathbb{Z}-span of the weights/roots respectively), we have that

weight lattice/root lattice

is a finite group
General Representations

- Throughout this talk we studied the "natural" representation $\rho(X) = [X, \cdot]$.
- The above discussion generalizes to any representation $\pi: g \rightarrow gl(V)$.
- Roots become weights, we can decompose V into a direct sum of weight spaces

$$V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_\lambda$$

weights will have certain configurations, etc.
- This allows us to classify the representations of a Lie Algebra g to a finite-dimensional vector space V.
- Through study of the weight lattice and root lattice (the \mathbb{Z}-span of the weights/roots respectively), we have that

weight lattice/root lattice

is a finite group
References