Thinking Mathematically

Samantha D. Suplee
“What is number theory about?”

- “Number theory is an excellent subject for learning the ways of mathematical thought. Every college student is familiar with basic properties of numbers, and yet the study of those familiar numbers leads us into waters of extreme depth…..”

- “Never should mathematics seem to be a mysterious collection of definitions, theorems, and proofs that arise from the void and must be memorized for a test.”

—Marshall, Odell, Starbird 2007
“So *this* is what division is?”

- “If we try to divide 1 by 2, then we seek an integer x such that $2x = 1$.” That’s what we actually mean by “division.”
- If a and m are both integers, then we could divide a by m and end up with another integer plus some remainder r that could be any number $0, 1, 2 \ldots$ all the way down to $m - 1$.
- $a = mq + r$.
“Are 1068 and 3054₇ the same number?”

\[
\begin{align*}
3054₇ &= 3 \times 7^3 + 0 \times 7^2 + 5 \times 7^1 + 4 \times 7^0 \\
1068 &= 7 \times 152 + 4 \\
152 &= 7 \times 21 + 5 \\
21 &= 7 \times 3 + 0 \\
3 &= 7 \times 0 + 3
\end{align*}
\]
“How can these numbers even exist?!”

- “How many of the following can you find in \mathbb{Z}_7?”
- $4(5), 2-6, \frac{1}{2}, \frac{2}{3}, \sqrt{2}, \sqrt{-3}, 3\sqrt{6}$
- $\sqrt{-3} \equiv \sqrt{4} \mod 7$. What number times itself gives us 4?
- $3\sqrt{6}: 1^3 = 1, 2^3 = 8 \equiv 1 \mod 7, 3^3 = 27 \equiv 6 \mod 7$
- I needed to think more deeply about the things I was asking the numbers to do.
Can you find an integer $n > 1$ such that the sum $1 + \frac{1}{2} + \ldots + \frac{1}{n}$ is an integer?

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1/2</th>
<th>1/3</th>
<th>1/4</th>
<th>1/5</th>
<th>1/6</th>
<th>1/7</th>
<th>1/8</th>
<th>1/9</th>
<th>1/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3/2</td>
<td>11/6</td>
<td>25/12</td>
<td>137/60</td>
<td>147/60</td>
<td>1089/840</td>
<td>2,283/840</td>
<td>1427/504</td>
<td>7387/2520</td>
</tr>
<tr>
<td>3/2</td>
<td>2/2</td>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/6</td>
<td>6/6</td>
<td>3/6</td>
<td>2/6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25/12</td>
<td>12/12</td>
<td>6/12</td>
<td>4/12</td>
<td>3/12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137/60</td>
<td>60/60</td>
<td>30/60</td>
<td>20/60</td>
<td>15/60</td>
<td>12/60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,089/420</td>
<td>420/420</td>
<td>210/420</td>
<td>140/420</td>
<td>105/420</td>
<td>84/420</td>
<td>70/420</td>
<td>60/420</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,283/840</td>
<td>840/840</td>
<td>420/840</td>
<td>280/840</td>
<td>210/840</td>
<td>168/840</td>
<td>140/840</td>
<td>120/840</td>
<td>105/840</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
“What are continued fractions trying to tell us about a number?”

29 = 11(2) + 7
11 = 7(1) + 4
7 = 4(1) + 3
4 = 3(1) + 1
3 = 1(3) + 0